Zipfsches Gesetz - LinkFang.de





Zipfsches Gesetz


Dieser Artikel befasst sich mit dem Echten Zipfschen Gesetz. Für das sogenannte Falsche siehe Falsches Zipfsches Gesetz.

Das Zipfsche Gesetz (nach George Kingsley Zipf, der dieses Gesetz in den 1930er Jahren aufstellte) ist ein Modell, mit dessen Hilfe man bei bestimmten Größen, die in eine Rangfolge gebracht werden, deren Wert aus ihrem Rang abschätzen kann. Häufige Verwendung findet das Gesetz in der Linguistik, speziell in der Korpuslinguistik und Quantitativen Linguistik, wo es zum Beispiel die Häufigkeit von Wörtern in einem Text zur Rangfolge in Beziehung setzt. Das Zipfsche Gesetz markierte den Beginn der Quantitativen Linguistik.

Ihm liegt ein Potenzgesetz zugrunde, das von der Pareto-Verteilung mathematisch beschrieben wird.

Einfache Zipfverteilung

Die vereinfachte Aussage des Zipfschen Gesetzes lautet: Wenn die Elemente einer Menge – beispielsweise die Wörter eines Textes – nach ihrer Häufigkeit geordnet werden, ist die Wahrscheinlichkeit [math]p[/math] ihres Auftretens umgekehrt proportional zur Position [math]n[/math] innerhalb der Reihenfolge:

[math]p(n) \sim \tfrac{1}{n}.[/math]

Der Normierungsfaktor bei [math]N[/math] Elementen ist durch die harmonische Reihe

[math]H_N = \sum_{n=1}^N \frac{1}{n} \approx \ln(N) + 0{,}577 \approx \ln(1{,}78 \cdot N)[/math]

gegeben und lässt sich nur für endliche Mengen angeben. Damit folgt:

[math]p(n) = \frac{1}{H_N} \cdot \frac{1}{n} \approx \frac{1}{n \cdot \ln(1{,}78 \cdot N)}[/math]

Wahrscheinlichkeitsverteilung

Das Zipfsche Gesetz hat seinen Ursprung in der Linguistik. Es besagt, dass bestimmte Wörter viel häufiger auftreten als andere und die Verteilung einer Hyperbel [math]\tfrac 1 n[/math] ähnelt. Beispielsweise treten bei den meisten Sprachen Wörter umso seltener auf, je länger sie sind. Der Ordnungsparameter Rang n lässt sich als kumulative Größe beschreiben: Der Rang n ist gleichbedeutend mit der Anzahl aller Elemente, die genauso groß oder größer sind als n. Für Rang 1 gibt es genau ein Element, nämlich das größte. Für Rang 2 sind es zwei, nämlich das erste und das zweite Element, für 3 drei usw.

Zipf nimmt einen einfachen reziproken Zusammenhang zum Rang an: [math]y(\text{Rang}) \sim \text{Rang}^{-a}[/math]. In der ursprünglichen Form ist das Zipfsche Gesetz frei von Parametern, es ist [math]a=1[/math].

Die Zipfsche Verteilung entspricht genau der Pareto-Verteilung, unter Vertauschung von Ordinate und Abszisse:

[math]y(x) \sim x^{-a} \text{ (Zipf) } \Leftrightarrow x(y) \sim y^{\frac{-1}{a}} \text{ (Pareto)}[/math]

Sie ist die Umkehrfunktion der Pareto-Verteilung. Wie diese ist sie eine kumulative Verteilungsfunktion, die einem Potenzgesetz gehorcht. Der Exponent [math]e[/math] der Verteilungsdichtefunktion lautet entsprechend:

[math]e = 1 + \frac{1}{a}[/math]

und für den einfachen Fall [math]a=1[/math]:

[math]e = 2[/math]

Beispiele

Die Verteilung der Worthäufigkeiten in einem Text (linke Grafik) entspricht in etwa qualitativ einer einfachen Zipfschen Verteilung.

Das Zipfsche Gesetz gibt den Exponenten a der kumulativen Verteilungsfunktion vor: a=1.

Der Fitwert für die Worthäufigkeiten beträgt jedoch a=0,83, gleichbedeutend mit dem Exponenten apareto=1,20 einer Paretoverteilung und dem Exponenten e einer Potenz-Verteilungsdichtefunktion von e=2,20.

Auch die Verteilung der Buchstabenhäufigkeiten ähnelt einer Zipfschen Verteilung. Eine Statistik basierend auf 20–30 Buchstaben ist aber nicht ausreichend, um den Verlauf mit einer Potenzfunktion anzupassen.

Ein weiteres Beispiel aus dem Artikel Pareto-Verteilung behandelt die Größenverteilung von Städten. Auch hier kann man bei einzelnen Ländern (z. B. Deutschland) einen Zusammenhang sehen, der einem Potenzgesetz zu gehorchen scheint, allerdings mit auffallenden Abweichungen. Die Grafik rechts stellt die Zipf-Näherung den Messwerten gegenüber. Der lineare Verlauf in der doppeltlogarithmischen Verteilung stützt die Annahme eines Potenzgesetzes. Anders als die Vermutung von Zipf hat der Exponent nicht den Wert 1, sondern den Wert 0,77, entsprechend einem Exponenten einer Potenzdichteverteilung von e=2,3. Diese Theorie, nach der sich die Einwohnerzahlen und Größen unabhängig voneinander entwickelnden Städten dennoch einem übergeordneten Gesetz folgend entwickeln, findet auch bei der Ermittlung zu erwartender Ortsgrößen anwendung.[1]

Die Bedeutung der Zipf-Verteilung liegt in der schnellen qualitativen Beschreibung von Verteilungen aus den unterschiedlichsten Bereichen, während die Pareto-Verteilung den Exponenten der Verteilung verfeinert.

Beispielsweise ist die Datenbasis für einen Fit bei der Angabe der Einwohnerzahl von nur sieben Städten zu klein. Das Zipfsche Gesetz liefert eine Näherung:

Rang n Stadt Einwohner 1/Rang p(n) p(N)·Menschen Abweichung in %
1 Berlin 3522896 1 0,39 3531136,31 -0,23
2 Hamburg 1626220 0,5 0,19 1765568,15 -8,57
3 München 1206683 0,33 0,13 1177045,44 2,46
4 Köln 946280 0,25 0,1 882784,08 6,71
5 Frankfurt 635150 0,2 0,08 706227,26 -11,19
6 Dortmund 594058 0,17 0,06 588522,72 0,93
7 Essen 624445 0,14 0,06 504448,04 19,22

Unter den Schlagworten Potenzgesetz, Skalengesetz oder Selbstorganisation wird über Gründe für das Auftreten von Potenzverteilungen diskutiert.

Siehe auch

Literatur

  • Helmut Birkhan: Das „Zipfsche Gesetz“, das schwache Präteritum und die germanische Lautverschiebung (= Österreichische Akademie der Wissenschaften. Philosophisch-Historische Klasse. Sitzungsberichte. 348). Verlag der Österreichischen Akademie der Wissenschaften, Wien 1979, ISBN 3-700-10285-2.
  • David Crystal: Die Cambridge Enzyklopädie der Sprache. Campus-Verlag, Frankfurt am Main u. a. 1993, ISBN 3-593-34824-1.
  • Xavier Gabaix: Zipf's law for cities: An explanation. In: The Quarterly Journal of Economics. Bd. 114, Nr. 3, 1999, S. 739–767, doi:10.1162/003355399556133 .
  • Henri Guiter, Michail V. Arapov (Hrsg.): Studies on Zipf's Law (= Quantitative Linguistics. Bd. 16). Studienverlag Brockmeyer, Bochum 1982, ISBN 3-88339-244-8.
  • Matteo Marsili, Yi-Cheng Zhang: Interacting Individuals Leading to Zipf's Law. In: Physical Review Letters. Bd. 80, Nr. 12, 1998, S. 2741–2744, doi:10.1103/PhysRevLett.80.2741 .
  • George Kingsley Zipf: The Psycho-Biology of Language. An Introduction to Dynamic Philology. Mifflin, Boston MA 1935, (The M.I.T. Press, Cambridge MA 1968).
  • George Kingsley Zipf: Human Behavior and the Principle of Least Effort. An Introduction to Human Ecology. Addison-Wesley, Cambridge MA 1949.

Weblinks

 Wiktionary: Zipfsches Gesetz – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Gibrat, Zipf, Fisher and Tippett: City Size and Growth Distributions Reconsidered - Christian Schluter, Mark Trede; PDF

Kategorien: Quantitative Linguistik | Informetrie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Zipfsches Gesetz (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.