Zahlenfunktion - LinkFang.de





Zahlenfunktion


Eine Zahlenfunktion ist eine Funktion, die Tupel von natürlichen Zahlen auf natürliche Zahlen abbildet.

Der Begriff wird hauptsächlich in der theoretischen Informatik in der Berechenbarkeitstheorie verwendet und dient der Abgrenzung zu Funktionen über anderen Mengen, insbesondere Wortfunktionen. Zum Beweis der Berechenbarkeit einer Zahlenfunktion dienen mathematische Modelle wie die Registermaschine, die While-Berechenbarkeit oder die μ-Rekursion.

Formale Definition

Eine Zahlenfunktion ist eine möglicherweise partielle Funktion [math]f:\mathbb{N}^k \to_p \mathbb{N}[/math].

Dabei steht [math]\mathbb{N}^k[/math] für das k-fache kartesische Produkt [math]\prod_{i=1}^k \mathbb{N} [/math], also die Menge der Tupel der Länge k mit natürlichen Zahlen als Komponenten.

Bedeutung

In der Theorie der Berechenbarkeit kann man zeigen, dass sich Funktionen über beliebige Mengen durch eine geeignete Nummerierung auf Zahlenfunktionen abbilden lassen. Über die Cantorsche Paarungsfunktion zeigt man weiter, dass es ausreicht, sich in der Theorie der Berechenbarkeit auf die Menge der einstelligen Zahlenfunktionen [math]\mathbb N \to_p \mathbb N[/math] zu beschränken.


Kategorien: Theoretische Informatik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Zahlenfunktion (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.