Wurzel (Mathematik) - LinkFang.de





Wurzel (Mathematik)


In der Mathematik versteht man unter Wurzelziehen oder Radizieren die Bestimmung der Unbekannten x in der Potenz

[math]a = x^n.\,[/math]

Hierbei ist [math]n[/math] eine natürliche Zahl größer als 1 und [math]a[/math] eine nichtnegative reelle Zahl. Das Ergebnis des Wurzelziehens bezeichnet man als Wurzel oder Radix (von lat. radix „Wurzel“). Das Radizieren ist eine Umkehrung des Potenzierens.[1] Im Fall [math]n = 2[/math] spricht man von Quadratwurzeln, bei [math]n = 3[/math] von Kubikwurzeln. Wurzeln werden mit Hilfe des Wurzelzeichens notiert.

Definition, Sprech- und Schreibweisen

Es sei [math]n \gt 1[/math] eine natürliche Zahl. Ist [math]a[/math] eine nichtnegative reelle Zahl, so besitzt die Gleichung

[math]x^n = a[/math]

genau eine nichtnegative reelle Lösung. Diese wird als [math]n[/math]-te Wurzel aus [math]a[/math] bezeichnet. Man schreibt dafür

[math]x = \sqrt[n\,]{a}.[/math]

Hierbei bezeichnet man

  • [math]\sqrt[n\,]{a}[/math] als Wurzel oder Radix,
  • [math]\sqrt{\;\;}[/math] als Wurzelzeichen,
  • [math]n[/math] als Wurzelexponent,
  • [math]a[/math] als Radikand.

Gelegentlich betrachtet man auch den Fall [math]n=1[/math], wobei dann einfach [math]\sqrt[1\,]{a} = a[/math] gilt.

Quadrat- und Kubikwurzel

Üblicherweise wird die zweite Wurzel als Quadratwurzel oder einfach nur als die Wurzel bezeichnet und der Wurzelexponent weggelassen:

[math]\sqrt a = \sqrt[2] a[/math]

Die Wurzel mit dem Wurzelexponenten 3 (dritte Wurzel) bezeichnet man auch als Kubikwurzel.

Beispiel:

[math] \sqrt[3]{8} = 2[/math]

(Sprich: Die dritte Wurzel aus 8 ist 2 oder Die Kubikwurzel aus 8 ist 2)

Mathematische Grundlagen

Zusammenhang mit Potenzen

Das Radizieren mit dem Wurzelexponenten n und das Potenzieren mit dem Exponenten n heben sich gegenseitig auf. Gemäß obenstehender Definition der Wurzel gilt für alle reellen Zahlen [math]a \geq 0[/math] und für alle natürlichen Zahlen [math]n \geq 1[/math]:

[math]\left(\sqrt[n]{a}\right)^n = a[/math]

Das Radizieren mit dem Wurzelexponenten n wirkt wie das Potenzieren mit dem Exponenten [math]\tfrac{1}{n}[/math]. Nach den Rechenregeln für Potenzen gilt nämlich:

[math]\left(a^{\frac{1}{n}}\right)^n = a^{\frac{n}{n}} = a^1 = a[/math]

Daher kann das Radizieren mit dem Wurzelexponenten n auch als Potenzieren mit dem Exponenten 1/n interpretiert werden:[1]

[math]\sqrt[n]{a} = a^{\frac{1}{n}}[/math]

Eindeutigkeit von Wurzeln aus positiven Zahlen

Obwohl die eingangs genannte Fragestellung bei geradzahligen Wurzelexponenten und positiven Radikanden zwei Lösungen mit unterschiedlichen Vorzeichen besitzt, steht die Schreibweise mit dem Wurzelzeichen [math] \sqrt[] [/math] grundsätzlich für die positive Lösung.[2][3] Beispielsweise hat die Gleichung [math]x^2 = 4[/math] die beiden Lösungen 2 und −2. Der Term [math]\sqrt[2]{4}[/math] hat jedoch den Wert 2 und nicht den Wert −2. Allgemein gilt daher für geradzahlige Wurzelexponenten

[math]\sqrt[2n]{x^{2n}} = |x|\,.[/math]

Wurzeln aus negativen Zahlen

Die Behandlung von Wurzeln aus negativen Zahlen ist nicht einheitlich. Es gilt beispielsweise

[math](-2)^3=-8\,,[/math]

und [math]-2[/math] ist die einzige reelle Zahl, deren dritte Potenz [math]-8[/math] ist. Allgemein ergeben sich für ungerade Potenzen negativer Zahlen wieder negative Zahlen.

Bezüglich der ungeraden Wurzeln aus negativen Zahlen werden folgende Positionen vertreten:

  • Wurzeln aus negativen Zahlen sind generell „verboten“. Beispielsweise ist [math]\sqrt[3]{-8}[/math] also undefiniert. Die Lösung der Gleichung [math]x^3 = -8[/math] wird geschrieben als [math]x = -\sqrt[3]{8}[/math].
  • Wurzeln aus negativen Zahlen sind erlaubt, wenn der Wurzelexponent eine ungerade Zahl ist (3, 5, 7, …). Für ungerade Zahlen [math]2n+1[/math] gilt generell
[math]\sqrt[2n+1]{-a}=-\sqrt[2n+1]{a}[/math].
Diese Festlegung ist mit manchen Eigenschaften der Wurzeln, die für positive Radikanden gelten, nicht vereinbar. Beispielsweise ist
[math]-2=\sqrt[3]{-8}\ne\sqrt[6]{(-8)^2}=\sqrt[6]{64}=+2.[/math]
Auch funktioniert diese Festlegung nicht mit der Gleichung [math]\sqrt[k]{a} = a^{\frac 1k} = \exp\left(\tfrac 1k \log(a)\right)[/math], da der Logarithmus von negativen Zahlen nicht definiert ist ([math]a[/math] darf also nicht negativ sein).

Wurzeln zu geraden Exponenten aus negativen Zahlen können keine reellen Zahlen sein, weil gerade Potenzen reeller Zahlen nie negativ sind. Es gibt keine reelle Zahl x, sodass [math]x^2=-1[/math], somit kann man auch keine Wurzel [math]x=\sqrt[2]{-1}[/math] finden, die in den reellen Zahlen liegt. Der Bedarf für Wurzeln aus negativen Zahlen führte zur Einführung der komplexen Zahlen;[4] allerdings gibt es auch im Bereich der komplexen Zahlen Wurzeln aus negativen Zahlen nur mit gewissen Einschränkungen, siehe unten.

Die Wurzelgesetze

Die Rechenregeln für Wurzeln ergeben sich aus jenen für Potenzen.

Für positive Zahlen [math]a[/math] und [math]b[/math] und [math]n,m,k \in \N[/math] gelten die folgenden Rechengesetze:

  • Produktregel: [math]\sqrt[n]{a}\cdot\sqrt[n]{b}=\sqrt[n]{a\cdot b}[/math]
  • Quotientenregel: [math]\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}[/math]
  • "Verschachtelungsregel" oder Iterationsregel: [math]\sqrt[k]{\sqrt[n]{a}}=\sqrt[k\cdot n]{a}[/math]
  • Definition für gebrochenen Exponenten: [math]a^{\frac{m}{n}}=\sqrt[n]{a^m}=\left(\sqrt[n]{a} \right)^m[/math]
  • Definition für negativen Exponenten: [math]a^{-\frac{m}{n}}=\frac{1}{a^\frac{m}{n}}[/math]
  • Bei gleichem Radikand gilt: [math]\sqrt[n]{a}\cdot\sqrt[m]{a}=a^{\frac{1}{n}+\frac{1}{m}}=\sqrt[nm]{a^{n+m}}[/math]

Bei negativen Zahlen [math]a[/math] und [math]b[/math] dürfen diese Rechengesetze nur angewendet werden, wenn [math]k[/math] und [math]n[/math] ungerade Zahlen sind. Bei komplexen Zahlen sind sie gänzlich zu vermeiden.

Grenzwerte

Es gelten die folgenden Grenzwerte:

  • [math]\lim_{n\rightarrow\infty}\sqrt[n]{a}= 1[/math] für [math]a \gt 0[/math]
  • [math]\lim_{n\rightarrow\infty}\sqrt[n]{n}= 1[/math]
Dies folgt aus der Ungleichung [math]n\lt\left(1 + \sqrt[2]{\tfrac{2}{n}}\right)^n[/math], die man mit Hilfe des binomischen Lehrsatzes zeigen kann.
  • [math]\lim_{n\to\infty}\sqrt[n]{n^k} = 1[/math], wobei [math]k[/math] eine beliebige, aber feste natürliche Zahl ist.
  • [math]\lim_{n\rightarrow\infty}\frac{\ln(n)}{n} = 0[/math],
wie aus der Exponentialdarstellung von [math]\sqrt[n]{n}[/math] hervorgeht.

Wurzelfunktionen

Funktionen der Form

[math]f\colon \mathbb{R}_0^+\to\mathbb{R}_0^+, x\mapsto\sqrt[n]x[/math] oder allgemeiner [math]x\mapsto\sqrt[n]{x^m}[/math]

heißen Wurzelfunktionen. Sie sind Potenzfunktionen, es gilt [math]\sqrt[n]{x^m}=x^\frac{m}{n}[/math].

Berechnung

Wurzeln können durch schriftliches Wurzelziehen bestimmt werden; dieses Verfahren ist jedoch von geringer praktischer Bedeutung.

Rückführung auf andere Funktionen

Höhere Wurzeln aus positiven Zahlen [math]x[/math] kann man wie jede Potenz durch Exponentialfunktion und Logarithmus ausdrücken:

[math]\sqrt[n]{x} = x^{1/n} = \exp\left(\frac{\ln(x)}{n}\right) [/math]

Numerische Berechnung

Um einen Näherungswert für eine Wurzel zu erhalten, kann man mehrere Verfahren anwenden. Dazu gehören unter anderem das Intervallhalbierungsverfahren.

Ein weiteres Näherungsverfahren zur Berechnung von [math]\sqrt[n]{x}[/math] ergibt sich, indem man mit dem Newton-Verfahren eine Nullstelle der Funktion

[math]y \mapsto y^n-x, \quad n \ge 1 [/math] annähert:
  1. Wähle einen (möglichst guten) Startwert [math]y \gt 0[/math]
  2. Iteriere nach der Vorschrift
[math]y \mapsto \frac{(n-1)y^n + x}{n \cdot y^{n-1}}[/math]

Für [math]n = 2[/math] erhält man gerade das Heron-Verfahren.

Beispiel für eine Näherung für [math]\sqrt[3]{2}[/math] nach dem obigen Iterationsverfahren:

Die Iterationsvorschrift lautet mit [math]x=2[/math] und [math]n=3[/math]

[math]y \mapsto \frac{2 \, y^3 + 2}{3 \, y^2}[/math].

Mit dem Startwert [math]y = 2[/math] erhält man:

Startwert: 2,000000000000
Schritt 1: 1,500000000000
Schritt 2: 1,296296296296
Schritt 3: 1,260932224741
Schritt 4: 1,259921860565
Schritt 5: 1,259921049895
Schritt 6: 1,259921049894

Methode der „Rechenkünstler“

Man kann, wie es Rechenkünstler machen, eine Wurzel auch durch Abschätzung und Anwendung elementarer Zahlentheorie berechnen, sofern bekannt ist, dass die Wurzel eine natürliche Zahl ist. Das lässt sich besonders gut am Beispiel der dritten Wurzel zeigen. Dazu muss man zwei Dinge wissen, nämlich die Größenordnung der Kubikzahlen, und die letzte Ziffer der Zahl:

1 1
8 2
27 3
64 4
125 5
216 6
343 7
512 8
729 9
1.000 10
1.000 10
8.000 20
27.000 30
64.000 40
125.000 50
216.000 60
343.000 70
512.000 80
729.000 90
1.000.000 100

Beispiele:

  • Die dritte Wurzel von 103.823:
    Die Zahl liegt zwischen 64.000 und 125.000, deshalb muss die Zehnerstelle der dritten Wurzel 4 sein. Die letzte Ziffer der Zahl ist eine 3, demnach ist die dritte Wurzel von 103.823 abgeschätzt 47.
  • Die dritte Wurzel von 12.167:
    Die Zahl liegt zwischen 8.000 und 27.000, deshalb muss die Zehnerstelle der dritten Wurzel 2 sein. Die letzte Ziffer der Zahl ist eine 7, demnach ist die dritte Wurzel von 12.167 abgeschätzt 23.

Das Ganze funktioniert aber nur dann, wenn man davon ausgehen kann, dass es sich bei der vorgegebenen Zahl um die dritte Potenz einer natürlichen Zahl handelt.

Bei den Aufgaben der Rechenkünstler geht es natürlich um viel höhere Potenzen mehrstelliger Zahlen – zum Beispiel die Berechnung der 25. Wurzel aus 880.794.982.218.444.893.023.439.794.626.120.190.780.624.990.275.329.063.400.179.824.681.489.784.873.773.249 (Lösung: 1729) und extremere Aufgaben.

Wurzeln aus komplexen Zahlen

Als die [math]n[/math]-ten Wurzeln einer komplexen Zahl [math]a\in\Bbb C[/math] bezeichnet man die Lösungen der Gleichung

[math]z^n = a [/math].

Ist [math]a\neq 0[/math] in der Exponentialform [math]a=|a|\,\mathrm e^{\mathrm i\varphi}[/math] dargestellt, so sind die [math]n[/math]-ten Wurzeln aus [math]a[/math] genau die [math]n[/math] komplexen Zahlen

[math]z_k=\sqrt[n]{|a|}\cdot\exp\left(\frac{\mathrm i\varphi}{n} + k\cdot\frac{2\pi\mathrm i}{n}\right)\quad(k=0,1,\dots,n-1)[/math]

Der Sonderfall [math]a=1[/math] wird als [math]n[/math]-te Kreisteilungsgleichung bezeichnet, die Lösungen als [math]n[/math]-te Einheitswurzeln. Die Bezeichnung „Kreisteilungsgleichung“ erklärt sich, wenn man ihre Lösungen in der Gaußschen Ebene betrachtet: die [math] n [/math]-ten Einheitswurzeln teilen den Kreis mit dem Radius [math]1[/math] und dem Koordinatenursprung als Mittelpunkt in [math]n[/math] gleiche Teile, sie bilden die Eckpunkte eines in den Kreis einbeschriebenen regulären [math]n[/math]-Ecks.

Anders als bei reellen Zahlen kann man nicht so einfach eine der Wurzeln als die Wurzel auszeichnen; dort wählt man die einzige nichtnegative Wurzel. Man kann jedoch eine (holomorphe) [math]n[/math]-te Wurzelfunktion für komplexe Zahlen, die keine nichtpositiven reellen Zahlen sind, über den Hauptzweig des komplexen Logarithmus definieren:

[math]z^{1/n} = \exp{\frac{\ln z}{n}} \quad (z\in\mathbb C\setminus\{x\in\mathbb R\mid x\leq0\})[/math]

Man kann den Logarithmus auch (unstetig) auf die negative reelle Achse fortsetzen, es gilt dann aber mit der so definierten Wurzelfunktion beispielsweise [math]\sqrt[3]{-8} = 2\,\exp{(\mathrm{i}\,60^\circ)} = 1+\mathrm i\sqrt3[/math] und nicht [math]=-2[/math].

Literatur

Weblinks

 Wiktionary: Radikand – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikibooks: Komplexe Wurzeln und der Satz von Moivre – Ausführliche Erklärung mit Beweisen zum komplexen Wurzelziehen

Einzelnachweise

  1. 1,0 1,1 T. Arens, F. Hettlich et al.: Mathematik, 2008, S. 46–47.
  2. DIN 1302:1999 Allgemeine mathematische Zeichen und Begriffe
  3. EN ISO 80000-2:2013 Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik
  4. T. Arens, F. Hettlich et al.: Mathematik. 2008, S. 122.

Kategorien: Wurzel (Mathematik)

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Wurzel (Mathematik) (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.