Widerlegungstheorem - LinkFang.de





Widerlegungstheorem


Als Widerlegungstheorem bezeichnet man ein logisches Theorem, welches eine Grundlage für eine Kette von deduktiven Schlussfolgerungen in der Aussagen- und Prädikatenlogik liefert. Derartige Schlussketten werden auch als Beweise bezeichnet. Das Widerlegungstheorem bildet eine komplementäre Formulierung des Folgerungstheorems. Seine besondere Bedeutung hat das Widerlegungstheorem im Kontext einer Automatisierung deduktiven Schließens erlangt. Es spielt daher eine zentrale Rolle in der Forschung zur Künstlichen Intelligenz. Im Detail besagt es Folgendes:

Eine Formel [math]B[/math] ist genau dann eine Folgerung der Formeln [math]A_1,A_2, ..., A_n[/math], wenn die Formel [math]A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \overline B[/math] nicht erfüllbar (d.h. inkonsistent) ist.

Als Widerlegungsverfahren oder Widerlegungskalkül (engl.: refutational calculus) bezeichnet man Verfahren zum Beweis mathematisch-logischer Theoreme, die auf dem Widerlegungstheorem beruhen. Dabei wird eine zu beweisende Aussage negiert in eine bestehende Formelmenge aufgenommen und zu zeigen versucht, dass die resultierende Formelmenge unerfüllbar ist.

Bekannte Widerlegungsverfahren sind das Resolutionsverfahren und der Baumkalkül.

Siehe auch

Literatur

Kapitel 3 in J. Harrison: Handbook of practical logic and automated reasoning. Cambridge University Press, Cambridge, 2009. ISBN 978-0-521-89957-4


Kategorien: Logik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Widerlegungstheorem (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.