Wärmeleitungsgleichung - LinkFang.de





Wärmeleitungsgleichung


Die Wärmeleitungsgleichung oder Diffusionsgleichung ist eine partielle Differentialgleichung. Sie ist das typische Beispiel einer parabolischen Differentialgleichung, beschreibt den Zusammenhang zwischen der zeitlichen und der räumlichen Änderung der Temperatur an einem Ort in einem Körper und eignet sich zur Berechnung instationärer Temperaturfelder. Im eindimensionalen Fall (ohne Wärmequellen) besagt sie, dass die (zeitliche) Ableitung der Temperatur das Produkt aus der zweiten räumlichen Ableitung und der Temperaturleitfähigkeit ist. Dies hat eine anschauliche Bedeutung: Wenn die zweite räumliche Ableitung an einem Ort ungleich null ist, so unterscheiden sich die ersten Ableitungen kurz vor und hinter diesem Ort. Der Wärmestrom, der zu diesem Ort fließt, unterscheidet sich also nach dem Fourierschen Gesetz von dem, der von ihm weg fließt. Es muss sich also die Temperatur an diesem Ort mit der Zeit ändern. Mathematisch sind Wärmeleitungsgleichung und Diffusionsgleichung identisch, statt Temperatur und Temperaturleitfähigkeit treten hier Konzentration und Diffusionskoeffizient auf. Die Wärmeleitungsgleichung lässt sich aus dem Energieerhaltungssatz und dem Fourierschen Gesetz der Wärmeleitung herleiten. Die Fundamentallösung der Wärmeleitungsgleichung wird Wärmeleitungskern genannt.

Formulierung

Homogene Gleichung

In homogenen Medien lautet die Wärmeleitungsgleichung

[math] \frac{\partial}{\partial t} u(\vec x,t) - a\Delta u(\vec{x},t) = 0, [/math]

wobei [math]u(\vec x,t)[/math] die Temperatur an der Stelle [math]\vec x[/math] zum Zeitpunkt [math]t[/math], [math]\Delta[/math] der Laplace-Operator bezüglich [math]\vec x[/math] und die Konstante [math]a \gt 0[/math] die Temperaturleitfähigkeit des Mediums ist.

Im stationären Fall, wenn also die Zeitableitung [math]\tfrac{\partial u}{\partial t}[/math] null ist, geht die Gleichung in die Laplace-Gleichung [math]\Delta u = 0[/math] über.

Eine häufig verwendete Vereinfachung berücksichtigt nur eine Raumdimension und beschreibt zum Beispiel die zeitliche Änderung der Temperatur in einem dünnen, relativ dazu langen Stab aus festem Material. Dadurch wird der Laplace-Operator zu einer einfachen zweiten Ableitung:

[math] \frac{\partial}{\partial t} u(x,t) - a\frac{\partial^2}{\partial x^2} {u(x,t)} = 0 [/math]

Nichthomogene Gleichung

In Medien mit zusätzlichen Wärmequellen (z. B. durch Joulesche Wärme oder eine chemische Reaktion) lautet die dann inhomogene Wärmeleitungsgleichung

[math] \frac{\partial}{\partial t} u(\vec x,t) - a\Delta u(\vec{x},t) = f(\vec{x},t), [/math]

wobei die rechte Seite [math]f[/math] der Quotient aus volumenbezogener Wärmestromdichte und der (volumenbezogenen) Wärmekapazität ist. Im stationären Fall, wenn also die Zeitableitung null ist, geht die Gleichung in die Poisson-Gleichung über.

Klassische Lösungen

Fundamentallösung

Eine spezielle Lösung der Wärmeleitungsgleichung ist die sogenannte Fundamentallösung der Wärmeleitungsgleichung. Diese lautet bei einem eindimensionalen Problem

[math] H(x,t)=\frac{1}{\sqrt{4\pi a t}} \exp\left(-\frac{x^2}{4at}\right) [/math]

und bei einem [math]n[/math]-dimensionalen Problem

[math] H(\vec{x};t)=\frac{1}{(4\pi a t)^{n/2}} \exp \left(-\frac{\|\vec{x}\|^2}{4at}\right), [/math]

wobei [math]\textstyle \|\vec{x}\|^2 = \sum_{k=1}^n x_k^2[/math] das Quadrat der euklidischen Norm von [math]\vec{x}[/math] ist.

[math]H[/math] wird auch als Wärmeleitungskern (oder engl. heat kernel) bezeichnet. Die funktionale Form entspricht der einer Gauß'schen Normalverteilung mit [math]\sigma^2 = 2at[/math].

Lösungsformel für das homogene Cauchyproblem

Mit Hilfe der oben angegebenen Fundamentallösung der Wärmeleitungsgleichung kann man für das homogene Cauchyproblem der Wärmeleitungsgleichung eine allgemeine Lösungsformel angeben. Dazu stellt man für gegebene Anfangsdaten [math]u_0[/math] zur Zeit [math]t=0[/math] zusätzlich die Anfangsbedingung

[math] \forall\ \vec{x} \in \R^n: u(\vec{x},t=0) = u_0(\vec{x}) [/math]

in Form einer Delta-Distribution dar. Die Lösung [math]u(\vec{x},t)[/math] des homogenen Anfangswertproblem erhält man für [math]t\gt0[/math] durch die Faltung der Fundamentallösung [math]H[/math] mit den gegebenen Anfangsdaten [math]u_0[/math]:

[math] u(\vec{x},t) = (H * u_0)(\vec{x},t) = \int_{\R^n} H(\vec{x} - \vec{y},t) u_0(\vec{y})\,d\vec{y} [/math]

Lösungsformel für das inhomogene Cauchyproblem mit Null-Anfangsdaten

Für das inhomogene Anfangswertproblem mit Null-Anfangsdaten [math]u_0(\vec{x})=0[/math] erhalten wir analog zum homogenen Fall durch die Faltung der Fundamentallösung [math]H[/math] mit der gegebenen rechten Seite [math]f[/math] als Lösungsformel:

[math] u(\vec{x},t) = (H * f)(\vec{x},t) = \int_0^t \int_{\R^n} H(\vec{x} - \vec{y},t-s) f(\vec{y},s)\,d\vec{y}\,ds [/math]

Allgemeine Lösungsformel

Die Lösungsformel für das inhomogene Cauchyproblem mit beliebigen Anfangsdaten erhalten wir aufgrund der Linearität der Wärmeleitungsgleichung durch Addition der Lösung des homogenen Cauchyproblems mit der Lösung des inhomogenen Cauchyproblems mit Null-Anfangsdaten, insgesamt also:

[math] u(\vec{x},t) = \int_{\R^n} H(\vec{x} - \vec{y},t) u_0(\vec{y})\,d\vec{y} + \int_0^t \int_{\R^n} H(\vec{x} - \vec{y},t-s) f(\vec{y},s)\,d\vec{y}\,ds [/math]

Weitere Lösungen

In manchen Fällen kann man Lösungen der Gleichung mit Hilfe des Symmetrieansatzes finden:

[math] u(x,t) = f\left(\frac{x}{\sqrt{at}}\right) [/math]

Dies führt auf die folgende gewöhnliche Differentialgleichung für [math]f[/math]:

[math] \xi f^\prime(\xi) = -2 f^{\prime\prime}(\xi) [/math]

Eine weitere eindimensionale Lösung lautet

[math] u(x,t) = \sin\left(2 c^2 at - xc\right) \exp(-cx), [/math]

wobei [math]c[/math] eine Konstante ist. Mit ihr kann man das Wärmespeicherungsverhalten modellieren, wenn ein Gegenstand (mit einer zeitlich sinusförmigen Temperatur) erhitzt wird.

Eigenschaften klassischer Lösungen

Maximumprinzip

Sei [math]u[/math] eine Funktion, die die Temperatur eines Festkörpers in Abhängigkeit vom Ort und der Zeit angibt, also [math]u=u(x_1,x_2,x_3,t)[/math]. [math]u[/math] ist zeitabhängig, weil sich die thermische Energie mit der Zeit über das Material ausbreitet. Die physikalische Selbstverständlichkeit, dass Wärme nicht aus dem Nichts entsteht, schlägt sich mathematisch im Maximumprinzip nieder: Der Maximalwert (über Zeit und Raum) der Temperatur wird entweder am Anfang des betrachteten Zeitintervalls oder am Rand des betrachteten Raumbereichs angenommen. Diese Eigenschaft gilt allgemein bei parabolischen partiellen Differentialgleichungen und kann leicht bewiesen werden.

Glättungseigenschaft

Eine weitere interessante Eigenschaft ist, dass selbst wenn [math]u[/math] zum Zeitpunkt [math]t=t_0[/math] eine Unstetigkeitsstelle hat, die Funktion [math]u[/math] zu jedem Zeitpunkt [math]t\gtt_0[/math] stetig im Raum ist.[1] Wenn also zwei Metallstücke verschiedener Temperatur bei [math]t=t_0[/math] fest verbunden werden, wird sich (nach dieser Modellierung) an der Verbindungsstelle schlagartig die mittlere Temperatur einstellen und die Temperaturkurve stetig durch beide Werkstücke verlaufen.

Siehe auch

Literatur

  • Gerhard Dziuk: Theorie und Numerik partieller Differentialgleichungen. de Gruyter, Berlin 2010, ISBN 978-3-11-014843-5, S. 183–253.
  • Lawrence C. Evans: Partial Differential Equations. Reprinted with corrections. American Mathematical Society, Providence RI 2008, ISBN 978-0-8218-0772-9 (Graduate studies in mathematics 19).
  • John Rozier Cannon: The One–Dimensional Heat Equation. Addison-Wesley Publishing Company / Cambridge University Press, 1984, ISBN 978-0-521-30243-2.

Weblinks

 Commons: Wärmeleitungsgleichung  – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Lawrence C. Evans: Partial Differential Equations. American Mathematical Society, 1998, ISBN 0-8218-0772-2, S. 49.

Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Wärmeleitungsgleichung (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.