Virtuelle Arbeit - LinkFang.de





Virtuelle Arbeit


Virtuelle Arbeit ist ein Begriff der Analytischen Mechanik bzw. der Technischen Mechanik und bezeichnet die Arbeit, die eine Kraft an einem System bei einer virtuellen Verschiebung verrichtet.[1] Unter einer virtuellen Verschiebung versteht man eine Gestalt- oder Lageänderung des Systems, die mit den Bindungen (z. B. Lager) verträglich und „instantan“, sonst aber willkürlich und außerdem infinitesimal klein ist. Das Prinzip der virtuellen Arbeit wird zur Berechnung des Gleichgewichts in der Statik und zum Aufstellen von Bewegungsgleichungen (d’Alembertsches Prinzip) verwendet.

Beschreibung

Virtuelle Verschiebung, virtuelle Arbeit

Im Folgenden wird ein N-Teilchensystem betrachtet, das durch Zwangsbedingungen eingeschränkt ist.

Eine virtuelle Verschiebung [math]\delta\mathbf{x}_{i}[/math] ist eine fiktive infinitesimale Verschiebung des [math]i[/math]-ten Teilchens, die mit den Zwangsbedingungen verträglich ist. Die Abhängigkeit von der Zeit wird nicht betrachtet.[Anm 1]

Die [math]s[/math] holonomen Zwangsbedingungen, [math]f_l\,(\mathbf x_1,\dots ,\mathbf x_N,\,t)=0\,\,,\quad l=1,\dots ,s\,\,[/math]  ,  werden durch Verwendung von [math]n=3N-s[/math] sogenannter generalisierter Koordinaten [math]\,q_k[/math] erfüllt:

[math]\delta\mathbf{x}_{i}=\sum_{k=1}^{n}\frac{\partial\mathbf{x}_{i}}{\partial q_{k}}\delta q_{k}[/math]

(Die holonomen Zwangsbedingungen werden also durch Auswahl und entsprechende Reduzierung der generalisierten Koordinaten explizit eliminiert.)

Zur Erfüllung auch der anholonomen Zwangsbedingungen unterliegen die [math]\delta q_{k}[/math] [Anm 2] weiteren Bedingungen, z. B. [math]r[/math] differentiellen nicht-integrablen Gleichungen:

[math]\,\sum_{k}a^{(l)}_{k}\delta q_{k}=0\ ,\quad l=1,\ldots,r[/math]

Die virtuelle Arbeit, die die Kraft [math]\mathbf{F}_{i}[/math] bei virtueller Verschiebung [math]\delta\mathbf{x}_{i}[/math] am [math]i[/math]-ten Teilchen verrichten würde, ist:

[math]\delta W_{i}=\mathbf{F}_{i}\cdot\delta\mathbf{x}_{i}[/math]

System im Gleichgewicht

Ist das [math]N[/math]-Teilchensystem im Gleichgewicht, so ist für jedes Teilchen die Beschleunigung gleich Null:

[math]\ddot{\mathbf{x}}_{i}=0[/math]

Daher muss die resultierende Kraft auf jedes Teilchen gleich Null sein:

[math]\mathbf{F}_{i}=m_{i}\ddot{\mathbf{x}}_{i}=0[/math]

Ist das System im Gleichgewicht, ist die virtuelle Arbeit der Kraft [math]\mathbf{F}_{i}[/math] bei Verschiebung [math]\delta\mathbf{x}_{i}[/math] gleich Null, da die Kraft selbst verschwindet:

[math]\delta W_{i}=\mathbf{F}_{i}\cdot\delta\mathbf{x}_{i}=0[/math]

Somit ist auch die Summe über die von allen Kräften bei virtuellen Verschiebungen geleistete Arbeit gleich Null:

[math]\sum_{i=1}^{N}\mathbf{F}_{i}\cdot\delta\mathbf{x}_{i}=0[/math]

Die resultierenden Kräfte [math]\mathbf{F}_{i}[/math] kann man zusammensetzen aus eingeprägten Kräften [math]\mathbf{F}_{i}^{e}[/math] und Zwangskräften [math]\mathbf{F}_{i}^{z}[/math]:

[math]\mathbf{F}_{i}=\mathbf{F}_{i}^{e}+\mathbf{F}_{i}^{z}[/math]

Eingesetzt in obige Beziehung:

[math]\sum_{i=1}^{N}\mathbf{F}_{i}^{e}\cdot\delta\mathbf{x}_{i}+\sum_{i=1}^{N}\mathbf{F}_{i}^{z}\cdot\delta\mathbf{x}_{i}=0[/math]

Prinzip der virtuellen Arbeit

Meist steht die Zwangskraft [math]\mathbf{F}_{i}^{z}[/math] senkrecht zur virtuellen Verschiebung [math]\delta\mathbf{x}_{i}[/math], so dass [math]\mathbf{F}_{i}^{z}\cdot\delta\mathbf{x}_{i}=0[/math] gilt. Dies ist z. B. der Fall, wenn die Bewegung auf Kurven oder Flächen begrenzt ist.

Es gibt allerdings Systeme, bei denen einzelne Zwangskräfte Arbeit verrichten [math]\mathbf{F}_{i}^{z}\cdot\delta\mathbf{x}_{i}\neq0[/math].

Das Prinzip der virtuellen Arbeit fordert nun, dass die Summe aller von den Zwangskräften verrichteten virtuellen Arbeiten bei einem System im Gleichgewicht verschwindet:

[math]\sum_{i=1}^{N}\mathbf{F}_{i}^{z}\cdot\delta\mathbf{x}_{i}=0[/math]

Für die eingeprägten Kräfte bedeutet das Prinzip der virtuellen Arbeit:

[math]\sum_{i=1}^{N}\mathbf{F}_{i}^{e}\cdot\delta\mathbf{x}_{i}=0[/math]

Man beachte, dass das Prinzip der virtuellen Arbeit nur ein Gleichgewichtsprinzip der Statik ist. Die Erweiterung auf die Dynamik liefert das D’Alembertsche Prinzip.

Prinzip der virtuellen Arbeit in konservativen Systemen

In konservativen Systemen sind alle eingeprägten Kräfte von einem Potential [math]V[/math] ableitbar:

[math]\mathbf{F}_{i}^{e}=-\nabla_{\mathbf{x}_{i}}V=-\frac{\partial V}{\partial\mathbf{x}_{i}}[/math]

In diesem Fall lässt sich das Prinzip der virtuellen Arbeit

[math]\sum_{i=1}^{N}\mathbf{F}_{i}^{e}\cdot\delta\mathbf{x}_{i}=-\sum_{i=1}^{N}\frac{\partial V}{\partial\mathbf{x}_{i}}\cdot\delta\mathbf{x}_{i}=0[/math]

in der Form

[math]\delta\, V=0[/math]

darstellen. Hierbei ist das Symbol [math]\delta[/math] als Variationszeichen im Sinne der Variationsrechnung aufzufassen. [math]\delta V=0[/math] bedeutet damit die erste Variation der Potentiellen Energie.

Beispiel

An einem Winkelhebel, der auf einer Achse frei drehbar gelagert ist, greifen 2 eingeprägte Kräfte [math]\mathbf{F}_1[/math] und [math]\mathbf{F}_2[/math] an. Die virtuellen Verschiebungen der Kraftangriffspunkte sind [math]\delta \mathbf{x}_1[/math] und [math]\delta \mathbf{x}_2[/math]. Die virtuelle Arbeit der eingeprägten Kräfte ist damit

[math]\mathbf{F}_1 \delta \mathbf{x}_1 - \mathbf{F}_2 \delta \mathbf{x}_2 = 0 [/math]

Weil der Winkelhebel als starr angesehen wird, sind die Größen [math]\delta \mathbf{x}_1[/math] und [math]\delta \mathbf{x}_2[/math] nicht unabhängig voneinander. Ihre Abhängigkeit kann man durch die Variation [math]\delta\Phi[/math] der generalisierten Koordinate [math]\Phi[/math] ausdrücken:

[math]\delta \mathbf{x}_1 = a_1\delta \Phi \quad \text{und} \quad \delta \mathbf{x}_2 = a_2 \delta \Phi[/math]

Damit wird die virtuelle Arbeit:

[math](\mathbf{F}_1 a_1 - \mathbf{F}_2 a_2) \delta \Phi = 0[/math]

Da die Gleichung für beliebige [math]\delta\Phi[/math] gilt, muss der Klammerausdruck identisch 0 sein:

[math]\mathbf{F}_1 a_1 = \mathbf{F}_2 a_2[/math]

Also bleibt das System im Gleichgewicht, d. h. es kippt weder nach rechts noch nach links, wenn die Kräfte multipliziert mit ihrer Achsdistanz gleich groß sind.

Prinzip der virtuellen Arbeit für dynamische Systeme

Hauptartikel: D’Alembertsches Prinzip

Die virtuelle Arbeit der Zwangskräfte bzw. -momente ist bei dynamischen Systemen gleich Null. Drückt man die virtuellen Verschiebungen in den verallgemeinerten Koordinaten aus, können mit dem Prinzip der virtuellen Arbeit Bewegungsgleichungen für große Mehrkörpersysteme aufgestellt werden.

Alternativen

Neben dem Prinzip der virtuellen Arbeit wird auch das Prinzip der virtuellen Leistung verwendet. Der wesentliche Unterschied dieses Prinzips liegt darin, dass statt virtuelle Verschiebungen hier virtuelle Geschwindigkeitsvariationen benutzt werden. In der Statik findet dieses Prinzip selten Anwendung, jedoch erweist sich dessen Erweiterung auf dynamische Systeme, das sogenannte Prinzip von Jourdain, vorteilhaft, da dort sehr elegant nichtholonome Bindungen berücksichtigt werden können.

Anmerkungen

  1. Aus dem totalen Differential einer Funktion [math]g(q_1,\dots ,q_n, t)[/math], also einem Ausdruck der Form [math] \mathrm dg=\sum_{i=1}^n \frac{\partial g}{\partial q_i} \, \mathrm dq_i + \frac{\partial g}{\partial t} \, \mathrm dt[/math] , entsteht die gesuchte virtuelle Änderung [math]\delta g=\sum_{i=1}^n \frac{\partial g}{\partial q_i} \, \delta q_i[/math]. Der Begriff „instantan“ ist dadurch mathematisiert.
  2. Die verallgemeinerten Koordinaten können von der Zeit abhängen, obwohl das erneut nicht eingeht, da nur der momentane Wert benötigt wird.

Literatur

Einzelnachweise

  1. Rolf Mahnken: Lehrbuch der Technischen Mechanik – Statik: Grundlagen und Anwendungen. Springer, ISBN 978-3-642-21710-4 (eingeschränkte Vorschau in der Google-Buchsuche).

Kategorien: Technische Mechanik | Theoretische Mechanik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Virtuelle Arbeit (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.