Vektorprozess - LinkFang.de





Vektorprozess


Als Vektorprozess wird in der Zeitreihenanalyse die Zusammenfassung von m reellen Zufallsvariablen, die gleichzeitig in t beobachtbar sind, verstanden.

Ein ökonomisches Beispiel für einen Vektorprozess ist z. B. die Zinsstrukturkurve. Die verschiedenen Zinssätze für die unterschiedlichen Restlaufzeiten bilden dabei die m Variablen, deren Veränderungen im Zeitablauf beobachtet werden können.

Eine gemeinsame Stationarität des Vektorprozesses impliziert die Stationarität eines jeden der beteiligten univariaten Prozesse. Im Umkehrschluss ist eine Zusammenfassung von m > 1 stationären univariaten Prozessen nicht zwingend ein gemeinsam stationärer Vektorprozess. Die Stationarität der Teilprozesse ist eine notwendige, aber keine hinreichende Bedingung. Letzteres ist gegeben, wenn die Koeffizientenmatrizen quadratisch summierbar sind.

Vektorprozesse lassen sich in der MA- (VMA) und AR-Darstellung (VAR) oder als Kombination beider Darstellungsformen (VARMA) notieren. Ein solcher Prozess heißt linearer oder rein nicht-deterministischer Vektorprozess. Das vektorielle Weiße Rauschen muss für verschiedene Zeitpunkte unkorreliert sein. Gleichzeitig ist jedoch eine Korrelation zugelassen. Dieses wird als kontemporäre Korrelation bezeichnet. Die Varianzen der im Vektor zusammengefassten Rauschvariablen können verschieden, müssen aber jeweils zeitkonstant sein.

Die Invertierbarkeit eines Vektorprozesses ist gegeben, wenn die AR-Koeffizientenmatrizen absolut summierbar sind. Ein solcher Prozess ist aber nicht zwingend stationär. Dies ist er dann, wenn alle Nullstellen des AR-Matrizenpolynoms außerhalb des Einheitskreises liegen. Ein stationärer Vektorprozess in der MA-Darstellung ist invertierbar, wenn alle Nullstellen der Determinante des MA-Matrizenpolynoms außerhalb des Einheitskreises liegen.

Hinsichtlich der Eindeutigkeit der ARMA-Darstellung eines Vektorprozesses ist zu sagen, dass die bei den univariaten Prozessen gültige Dualität nicht mehr gilt. Vielmehr gehören zu einem gegebenen Vektorprozess mit zugehöriger Kovarianzmatrix-Funktion gleichzeitig ein endlicher AR-, MA- oder ARMA-Vektorprozess.


Kategorien: Zeitreihenanalyse

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Vektorprozess (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.