Subdivision Surface - LinkFang.de





Subdivision Surface


Eine Subdivision Surface (deutsch: Unterteilungsfläche) ist in der Computergrafik eine glatte (in der ersten oder mehrfachen Ableitung stetige) Fläche, die aus einem Ausgangsgitter (auch Kontroll-Polygonnetz genannt) erzeugt wurde. Eine Subdivision Surface ist ursprünglich als der Grenzwert (Limes) eines unendlichen, rekursiven Verfeinerungsschemas definiert. Dieses Verfeinerungsschema wird auch als Subdivision Schema bezeichnet; der Grenzwert als Limesfläche.

Entwicklung

  • 1978 Subdivision Surfaces werden gleichzeitig von Edwin Catmull und Jim Clark sowie von Daniel Doo und Malcom Sabin entwickelt.
  • 1985 Ulrich Reif entwickelt eine Methode für subdivision bei extraordinary Vertices (deutsch: außergewöhnliche Gitterpunkte bzw. Knoten).
  • 1990 Nira Dyn, David Levine und John A. Gregory entwickeln das Butterfly Schema.
  • 1996 Dennis Zorin und Peter Schröder stellen das modifizierte Butterfly Schema vor.
  • 1998 Tony DeRose und Michael Kass stellen Methoden für den Einsatz von Subdivision Surfaces in der Character animation vor, insbesondere die Modifikation des Catmull-Clark Schemas zur Unterstützung von Falten und Ecken beliebiger Schärfe, Löchern und der stetigen Projektion von Texturen.
  • 1998 Sederberg et al. entwickeln das erste nicht-gleichförmige Subdivison Schema.
  • 1998 Jos Stam stellt die erste nichtrekursive Methode zur Berechnung von Catmull-Clark Subdivision Surfaces vor.

Verfeinerungsschemata

Verfeinerungsschemata können grob in zwei Kategorien eingeteilt werden: interpolierende und approximierende. Interpolierende Schemata werden benutzt, wenn die Limesfläche die Punkte des Ausgangsgitters interpolieren soll. Approximierende Schemata leisten dies nicht; die Limesfläche kann innerhalb oder außerhalb des Ausgangsgitters zu liegen kommen. Oft ist bei approximierenden Schemata das Ausgangsgitter die konvexe Hülle der Limesfläche. Generell erzeugen die meisten bekannten approximierenden Schemata ästhetisch ansprechendere Limesflächen.

Das andere Unterscheidungskriterium, das auch Verwendung findet, ist die Kategorisierung in Schemeta, die nur auf Gittern aus Polygonen mit bestimmter Punktzahl bestehen. Einige solcher Schemata benötigen beispielsweise ein Ausgangsgitter, das nur aus Dreiecken oder Vierecken besteht.

Viele Schemata sind auch nur auf mannigfaltigen Ausgangsgittern definiert.

Approximierende Schemata

Approximierend meint, dass die Limesfläche das Ausgangsgitter approximiert (annähert) und die bei jedem Rekursionschritt neu erzeugten Punkte in der Regel nicht auf der Limesfläche liegen. Beispiele für approximierende Schemata sind:

Interpolierende Schemata

Interpolierend heißt, dass die Punkte des Ausgangsgitters und die durch jeden Rekursionsschritt neu erzeugten Punkte immer auf der Limesfläche liegen. Beispiele für interpolierende Schemata sind:

  • Butterfly Subdivision Surfaces: Das Butterfly Subdivision Surface ist ein interpolierendes Unterteilungsschema für Dreiecksnetze. Dabei werden pro Iterationsschritt für jedes Dreieck neue Punkte und Kanten erzeugt, um das Netz zu verfeinern.
  • Kobbelt

Weblinks


Kategorien: Geometrische Modellierung | Computergrafik | Mathematische Funktion

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Subdivision Surface (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.