Strömungen in Rohrleitungen - LinkFang.de





Strömungen in Rohrleitungen


Flüssigkeitsströmung in Rohrleitungen beziehungsweise geschlossenen Gerinnen ist eines der drei Strömungsmodelle der Hydrodynamik (neben Strömungen in offenen Gerinnen und Sickerströmungen) und wird auch als Rohrhydraulik bezeichnet.

Grundlagen

Der Begriff umfasst die Aspekte der Strömungsvorgänge in vollgefüllten Rohrleitungen, das heißt Systemen, bei denen die Flüssigkeit das Rohr (bei technischen Anwendungen) oder Gerinnebett (in der Gewässerkunde) zur Gänze füllt. Strömungen in teilgefüllten Rohrleitungen, Kanälen, Flüssen etc. sind Strömungen in offenen Gerinnen.

Wesentliche Eigenschaften zur Beschreibung einer Rohrströmung sind der Volumenfluss bzw. das Geschwindigkeitsprofil und die Rohrreibungszahl zur Berechnung des Druckabfalls. Im Falle einer laminaren Strömung in einem kreisrunden Rohr lässt sich der Volumenfluss und das Geschwindigkeitsprofil in Abhängigkeit vom Radius des Rohres mit dem Gesetz von Hagen-Poiseuille beschreiben. Die Abhängigkeit der Fließgeschwindigkeit bei veränderlichem Rohrquerschnitt ist als Venturi-Effekt bekannt.

Beispielhaft für solche Strömungsformen sind im Leitungsbau:

In der Hydrologie (Limnologie):

Stationäre und instationäre Strömungen

Von stationären Verhältnissen spricht man, wenn sich die Strömungsverhältnisse (z. B. Durchfluss Druck) an einem Punkt der Rohrleitung zeitlich nicht ändern. Eine derartige vereinfachende Annahme ist für viele Aufgaben der Hydraulik in Rohrleitungen ausreichend. Die Berechnung derartiger Systeme erfolgt durch Anwendung der Bernoullischen Energiegleichung und Kenntnis z. B. des Verhaltens von Pumpen (siehe z. B. Kreiselpumpe) und Behältern.

Instationäre Bedingungen treten immer dann auf, wenn zeitliche Veränderungen eine Rolle spielen. Ein praktisches Beispiel ist der Druckstoß beim plötzlichen Öffnen oder Schließen eines Ventils. Dabei treten erhebliche dynamische Kräfte (Schläge) auf. Das kann man zum Beispiel bei Wasserschläuchen beobachten oder in Hauswasserleitungen manchmal hören. Dabei können Schäden an Leitungen und Rohrhalterungen entstehen. Besondere Bedeutung hat dies beim Betrieb von Wasserkraftwerken insbesondere bei großen Fallhöhen. Die beim Ein- und Ausschalten von Turbinen bzw. Öffnen und Schließen von Schiebern auftretenden Druckschwankungen werden dabei durch so genannte Wasserschlösser (das sind Ausgleichsbecken) oder durch langsames Verfahren (Öffnen oder Schließen) der Absperrorgane gemildert.

Die Bernoullische Gleichung lautet für instationäre Strömungen inkompressibler reibungsfreier Fluide [1]:

[math] \frac{c_1^2}2+\frac{p_1}\rho+gz_1=\frac{c_2^2}2+\frac{p_2}\rho+gz_2+\int_1^2 \frac{dc}{dt}\,ds[/math]

Speziell für richtungsstationäre Strömungen (z. B. durch eine starre Leitung) und unter Berücksichtigung von Strömungsverlusten ergibt sich:

[math] \frac{c_1^2}2+\frac{p_1}\rho+gz_1=\frac{c_2^2}2+\frac{p_2}\rho+gz_2+\frac{dc_n}{dt}\int_1^2 \frac{A_n}{A(s)}\,\mathrm (ds) +\frac{\Delta p_{V1-2}}\rho[/math]

Hierin ist

[math]c[/math] die Geschwindigkeit des Fluids,
[math]g[/math] die Schwerebeschleunigung,
[math]p[/math] der Druck (absolut),
[math]\rho[/math] (rho) die Dichte des Mediums,
[math]z[/math] die Höhe über/unter einer Bezugsebene mit gleicher geodätischer Höhe
[math]A[/math] die Querschnittsfläche des Stromfadens,
[math]s[/math] die Wegkoordinate,
[math]\Delta p_{V1-2}[/math] der Druckverlust zwischen den Punkten 1 und 2
Index 1 = ein Punkt des Stromfadens stromauf
Index 2 = ein Punkt des Stromfadens stromab
Index n = ein beliebiger Punkt des Stromfadens zwischen 1 und 2

Für die praktische Berechnung von Rohrströmungen und den damit verbundenen Druckverlusten werden Druckverlustbeiwerte und Rohrreibungszahlen herangezogen.

Netzformen

Die einfachste Netzform ist die Verbindung von einer Einspeisestelle (z. B. Pumpe oder Behälter) zu einem Verbraucher. Bei Verzweigung eines derartigen Systems zu mehreren Verbrauchern entsteht ein baumförmiges Netz. Derartige Netze können vergleichsweise einfach berechnet werden, besitzen jedoch keine Sicherheiten bei Ausfall von Teilsträngen und führen unter Umständen zu ungleichen Druckverteilungen.

So genannte ringförmige oder vermaschte Netze verbinden die Einspeisestelle(n) und den/die Verbraucher durch mehrere Leitungen. Dadurch kann eine gleichmäßigere Druckverteilung und eine höhere Versorgungssicherheit erreicht werden. Durch die Vermaschung ursprünglich baumförmiger Netze können unter Umständen Versorgungsengpässe gemindert werden. Dabei ist es möglich, dass an mehreren Punkten in das Netz eingespeist wird. Derartige Systeme sind jedoch komplizierter zu berechnen (z. B. mit der Finite-Elemente-Methode oder dem Verfahren nach Cross, das auch in der Baustatik zur Berechnung von Rahmen eingesetzt werden kann).

Auslegung und Dimensionierung

Die Berechnung der Druckverluste in Rohrleitungen infolge Rohrreibung und aufgrund von Einzelwiderständen hat abhängig vom Medium als inkompressible oder als kompressible Strömung zu erfolgen. Sehr detaillierte Algorithmen existieren beispielsweise für Teilstrecken und für kleine Netze zum Selbstprogrammieren. [2].

Weblinks

Einzelnachweise

  1. Gleichung (4.3-1) in: Schade, H. ; Kunz, E.: Strömungslehre. 3. Auflage. Berlin ​: Walter de Gruyter, 2007. – ISBN 978-3-11-018972-8
  2. Bernd Glück: "Hydrodynamische und gasdynamische Rohrströmung, Druckverluste" . Algorithmen für Druckverluste zum Programmieren

Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Strömungen in Rohrleitungen (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.