Skalarmultiplikation - LinkFang.de





Skalarmultiplikation


Dieser Artikel behandelt die Multiplikation von Vektoren mit Skalaren, deren Ergebnis ein Vektor ist. Für die Multiplikation zweier Vektoren, deren Ergebnis ein Skalar ist, siehe Skalarprodukt.

Die Skalarmultiplikation, auch S-Multiplikation oder skalare Multiplikation genannt, ist eine äußere zweistellige Verknüpfung zwischen einem Skalar und einem Vektor, die in der Definition von Vektorräumen gefordert wird. Die Skalare sind dabei die Elemente des Körpers, über dem der Vektorraum definiert ist. Auch die analoge Verknüpfung bei Moduln wird Skalarmultiplikation genannt.

Das Ergebnis einer Skalarmultiplikation ist ein entsprechend skalierter Vektor. Im anschaulichen Fall euklidischer Vektorräume verlängert oder verkürzt die Skalarmultiplikation die Länge des Vektors um den angegebenen Faktor. Bei negativen Skalaren wird dabei zusätzlich die Richtung des Vektors umgekehrt. Eine spezielle Form einer solchen Skalierung ist die Normierung. Hierbei wird ein Vektor mit dem Kehrwert seiner Länge (allgemein seiner Norm) multipliziert, wodurch man einen Einheitsvektor mit Länge (oder Norm) eins erhält.

Definition

Ist [math]V[/math] ein Vektorraum über dem Körper [math]K[/math], dann ist die Skalarmultiplikation eine zweistellige Verknüpfung

[math]\odot \colon K \times V \to V[/math],

die per Definition des Vektorraumes gemischt assoziativ und distributiv ist, also für alle Vektoren [math]u,v \in V[/math] und alle Skalare [math]\alpha, \beta \in K[/math] folgende Eigenschaften erfüllt:

  • [math]\alpha \odot (\beta \odot v) = (\alpha \cdot \beta) \odot v[/math]
  • [math]\alpha \odot (u \oplus v) = \alpha \odot u \oplus \alpha \odot v[/math]
  • [math](\alpha + \beta) \odot v = \alpha \odot v \oplus \beta \odot v[/math]

Zudem gilt die Neutralität des Einselements [math]1[/math] des Körpers:

  • [math]1 \odot v = v[/math].

Hierbei bezeichnet [math]\oplus[/math] die Vektoraddition in [math]V[/math] sowie [math]+[/math] und [math]\cdot[/math] jeweils die Addition und die Multiplikation im Körper [math]K[/math]. Häufig wird sowohl für die Vektoraddition, als auch für die Körperaddition das Pluszeichen [math]+[/math] und sowohl für die Skalarmultiplikation, als auch für die Körpermultiplikation das Malzeichen [math]\cdot[/math] verwendet. Dieser Konvention wird auch aufgrund der einfacheren Lesbarkeit im weiteren Verlauf dieses Artikels gefolgt. Das Multiplikationssymbol wird oft auch weggelassen und man schreibt kurz [math]\alpha \beta[/math] statt [math]\alpha \cdot \beta[/math] und [math]\alpha v[/math] statt [math]\alpha \cdot v[/math].

Eigenschaften

Neutralität

Bezeichnet [math]0_K \in K[/math] das Nullelement des Körpers und [math]0_V \in V[/math] den Nullvektor des Vektorraums, dann gilt für alle Vektoren [math]v \in V[/math]

[math]0_K \cdot v = 0_V[/math],

denn es gilt mit dem zweiten Distributivgesetz

[math]0_K \cdot v + 0_K \cdot v = (0_K + 0_K) \cdot v = 0_K \cdot v[/math]

und deswegen muss [math]0_K \cdot v[/math] der Nullvektor sein. Entsprechend gilt für alle Skalare [math]\alpha \in K[/math]

[math]\alpha \cdot 0_V = 0_V[/math],

denn es gilt mit dem ersten Distributivgesetz

[math]\alpha \cdot 0_V + \alpha \cdot 0_V = \alpha \cdot (0_V + 0_V) = \alpha \cdot 0_V[/math]

und daher muss auch hier [math]\alpha \cdot 0_V[/math] der Nullvektor sein. Insgesamt erhält man so

[math]\alpha \cdot v = 0_V \Leftrightarrow \alpha = 0_K ~\text{oder}~ v = 0_V[/math],

denn aus [math]\alpha \cdot v = 0_V[/math] folgt entweder [math]\alpha = 0_K[/math] oder [math]\alpha \neq 0_K[/math] und dann [math]v = \alpha^{-1} \cdot 0_V = 0_V[/math], wobei [math]\alpha^{-1}[/math] das multiplikativ inverse Element zu [math]\alpha[/math] ist.

Inverse

Bezeichnet nun [math]-1[/math] das additiv inverse Element zum Einselement [math]1[/math] und [math]-v[/math] den inversen Vektor zu [math]v[/math], dann gilt

[math](-1) \cdot v = -v[/math],

denn mit der Neutralität der Eins erhält man

[math]0_K = 0_K \cdot v = ( 1 - 1 ) \cdot v = 1 \cdot v + (-1) \cdot v = v + (-1) \cdot v[/math]

und damit ist [math](-1) \cdot v[/math] der inverse Vektor zu [math]v[/math]. Ist nun allgemein [math]-\alpha[/math] das additiv inverse Element zu [math]\alpha[/math], dann gilt

[math](-\alpha) \cdot v = -(\alpha \cdot v) = \alpha \cdot (-v)[/math],

denn mit [math]\beta = -1[/math] erhält man durch das gemischte Assoziativgesetz

[math](-\alpha) \cdot v = (\beta \alpha) \cdot v = \beta \cdot (\alpha \cdot v) = -(\alpha \cdot v)[/math]

sowie mit der Kommutativität der Multiplikation zweier Skalare

[math](-\alpha) \cdot v = (\alpha \beta) \cdot v = \alpha \cdot (\beta \cdot v) = \alpha \cdot (-v)[/math].

Beispiele

Koordinatenvektoren

Ist [math]V = K^n[/math] der Koordinatenraum und [math]v = (v_1, \ldots , v_n)^T \in K^n[/math] ein Koordinatenvektor, so wird die Multiplikation mit einem Skalar [math]\alpha \in K[/math] komponentenweise wie folgt definiert:

[math]\alpha \cdot v = \alpha \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \alpha \cdot v_1 \\ \vdots \\ \alpha \cdot v_n \end{pmatrix}[/math].

Bei der Skalarmultiplikation wird demnach jede Komponente des Vektors mit dem Skalar multipliziert. Im dreidimensionalen euklidischen Raum [math]\R^3[/math] erhält man beispielsweise

[math]3 \cdot \begin{pmatrix} \,1\, \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \,3 \cdot 1\, \\ 3 \cdot 4 \\ 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} \,3\, \\ 12 \\ 6 \end{pmatrix}[/math].

Matrizen

Ist [math]V = K^{m \times n}[/math] der Matrizenraum und [math]A = ( a_{ij} ) \in K^{m \times n}[/math] eine Matrix, so wird die Multiplikation mit einem Skalar [math]\alpha \in K[/math] ebenfalls komponentenweise definiert:

[math]\alpha \cdot A = \alpha \cdot \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{mn} \end{pmatrix} = \begin{pmatrix} \alpha \cdot a_{11} & \ldots & \alpha \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ \alpha \cdot a_{m1} & \ldots & \alpha \cdot a_{mn} \end{pmatrix}[/math].

Bei der Skalarmultiplikation wird also wiederum jeder Eintrag der Matrix mit dem Skalar multipliziert. Beispielsweise erhält man für eine reelle [math](2 \times 2)[/math]-Matrix

[math]3 \cdot \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot 2 \\ 3 \cdot 4 & 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 12 & 9 \end{pmatrix}[/math].

Polynome

Ist [math]V = K[X][/math] der Vektorraum der Polynome in der Variablen [math]X[/math] mit Koeffizienten aus einem Körper [math]K[/math], so wird die Multiplikation eines Polynoms [math]P \in K[X][/math] mit einem Skalar [math]\alpha \in K[/math] wiederum komponentenweise definiert:

[math]\alpha P = \alpha ( a_0 + a_1 X + \dotsb + a_n X^n ) = ( \alpha a_0 ) + ( \alpha a_1 ) X + \dotsb + ( \alpha a_n ) X^n[/math].

Beispielsweise ergibt die Skalarmultiplikation der reellen Polynomfunktion [math]p(x) = x^n - x[/math] mit der Zahl [math]3[/math] das Polynom

[math](3 p)(x) = 3 ( x^n - x ) = 3x^n - 3x[/math].

Funktionen

Ist [math]V = F(\Omega, W)[/math] ein linearer Funktionenraum und [math]f \in F(\Omega, W)[/math] eine Funktion von einer nichtleeren Menge [math]\Omega[/math] in einen Vektorraum [math]W[/math], dann wird das Ergebnis der Skalarmultiplikation einer solchen Funktion mit einem Skalar [math]\alpha \in K[/math] definiert als die Funktion

[math]\alpha f \colon \Omega \to W, \quad x \mapsto (\alpha f)(x) = \alpha \cdot f(x)[/math].

Betrachtet man beispielsweise den Vektorraum der linearen reellen Funktionen der Form [math]f(x) = ax + b[/math], dann erhält man durch Skalarmultiplikation mit einer reellen Zahl [math]c[/math] die Funktion

[math](c f)(x) = c \cdot f(x) = c \cdot (ax + b) = c a x + c b[/math].

Durch die Skalarmultiplikation wird demnach jeder Funktionswert um den Faktor [math]c[/math] skaliert.

Literatur

Weblinks


Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Skalarmultiplikation (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.