Sekanten-Tangenten-Satz - LinkFang.de





Sekanten-Tangenten-Satz


Der Sekanten-Tangenten-Satz (auch Sehnen-Tangenten-Satz genannt) ist ein Lehrsatz der euklidischen Geometrie. Er beschreibt, in welcher Beziehung Strecken stehen, die von einer Tangente, einer Sekante und dem zugehörigen Kreis gebildet werden (siehe Zeichnung).

Gegeben sei ein Kreis k mit einer Sekante g und einer Tangente t, die sich in einem Punkt S außerhalb des Kreises schneiden. Bezeichnet man die Schnittpunkte des Kreises k mit g als [math]G_1[/math] beziehungsweise [math]G_2[/math] und den Berührpunkt der Tangente als [math]B[/math], so gilt:

[math]\overline{SG_1} \cdot \overline{SG_2} = \overline{SB}^2[/math]

Diese Aussage kann man auch als Verhältnisgleichung formulieren:

[math]\overline{SG_1} : \overline{SB} = \overline{SB} : \overline{SG_2}[/math]

Der Sekanten-Tangenten-Satz lässt sich - ähnlich wie der Sehnensatz und der Sekantensatz - mit Hilfe ähnlicher Dreiecke beweisen.

Literatur

  • Max Koecher, Aloys Krieg: Ebene Geometrie. 2. Auflage. Springer-Verlag Berlin Heidelberg New York, 2000, ISBN 3-540-67643-0
  • Schupp, H.: Elementargeometrie, UTB Schöningh (1977), ISBN 3-506-99189-2, S.150


Kategorien: Kreisgeometrie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Sekanten-Tangenten-Satz (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.