Richardson-Extrapolation - LinkFang.de





Richardson-Extrapolation


Das Verfahren der Richardson-Extrapolation wurde von Lewis Fry Richardson (1881–1953) entwickelt. Es kann angewendet werden, wenn man bei der numerischen Lösung eines Problems aufgrund zweier verschiedener Diskretisierungen (mit den Schrittweiten [math]h_u[/math] und [math]h_g[/math]) die Näherungen [math]U_u[/math] und [math]U_g[/math] für ein Problem hat, und diese Näherungen mit einem Verfahren [math]p[/math]-ter Ordnung berechnet worden sind.

Sind diese Voraussetzungen erfüllt, so ist die Extrapolation

[math]U_R=\frac{U_u-U_g\left(\frac{h_u}{h_g}\right)^p}{1-\left(\frac{h_u}{h_g}\right)^p}=U_g+\frac{U_u-U_g}{1-\left(\frac{h_u}{h_g}\right)^p}[/math]

eine bessere Näherung für das Ergebnis.

Literatur

  • Hans-Görg Roos, Hubert Schwetlick: Numerische Mathematik. Das Grundwissen für jedermann. Vieweg+Teubner Verlag, Stuttgart u. a. 1999, ISBN 3-519-00221-3, S. 125 (Mathematik für Ingenieure und Naturwissenschaftler).
  • Martin Hermann: Numerische Mathematik. 2. überarbeitete und erweiterte Auflage. Oldenbourg Wissenschaftsverlag, München u. a. 2006, ISBN 3-486-57935-5, S. 412.
  • Guido Walz: The History of Extrapolation Methods in Numerical Analysis. Universität Mannheim – Fakultät für Mathematik und Informatik, Mannheim 1991 (Fakultät für Mathematik und Informatik der Universität Mannheim – Manuskripte 130, ZDB-ID 263563-x ), (Online-Version bei der UB Mannheim ).

Weblinks


Kategorien: Numerische Mathematik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Richardson-Extrapolation (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.