Reihenresonanz - LinkFang.de





Reihenresonanz


Reihenresonanz, auch Spannungsresonanz oder Serienresonanz sind Bezeichnungen für das Impedanzminimum elektronischer Schaltungen in der Umgebung einer Resonanzfrequenz. Reihenschwingkreise besitzen nur eine Resonanzfrequenz, andere Schaltungen mehrere.

Diese niedrige Impedanz wird beim Saugkreis verwendet, um unerwünschte Frequenzen kurzzuschließen.

Resonanz beim Reihenschwingkreis

Induktivitäten und Kapazitäten besitzen einen frequenzabhängigen Blindwiderstand. Damit wird der Scheinwiderstand [math]Z[/math] einer Reihenschaltung aus R, L und C auch frequenzabhängig:

[math] |Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2} \, [/math]

Wenn der Term [math]\left(\omega L - \frac{1}{\omega C} \right)[/math] null wird, ist der Scheinwiderstand [math]Z[/math] minimal und ein reiner, reeller Wirkwiderstand [math]Z_r = R[/math]. Daraus lässt sich durch Umformung und Auflösung nach [math]\omega[/math] die Frequenz bestimmen, bei der die Resonanz eintritt – die Resonanzfrequenz [math]f_r = \frac{\omega_r}{2\pi}[/math]. Man erhält die Thomsonsche Schwingungsgleichung:

[math] f_r = \frac{1}{2\pi\cdot\sqrt{L C}} \, [/math]

Weil der Scheinwiderstand minimal wird, erreicht der Strom durch die Schaltung bei Resonanz seinen Maximalwert [math]I_r[/math] und kann bei angelegter Klemmspannung U nach dem ohmschen Gesetz berechnet werden

[math] I_\mathrm{max} = I_r = \frac{U}{Z_r} = \frac{U}{R} \, [/math]

Resonanzspannung an Bauelementen

An den Blindwiderständen XL und XC tritt bei Resonanz ein weiterer Effekt auf: An beiden wird die Spannung betragsmäßig gleich, die sogenannte Resonanzspannung [math]U_r[/math]:

[math] U_r = U_{rC} = U_{rL} = \frac{I_r}{\omega_r C} = I_r \omega_r L \, [/math]

Sie erreicht für den Fall

[math] \frac{1}{\omega_r C} = \omega_r L \gt R \, [/math]

Werte, die erheblich größer als die angelegte Klemmenspannung U sein können. Diese Spannungsüberhöhung wird bei Energiesparlampen und der Hintergrundbeleuchtung von Notebooks benötigt, um die Gasentladungslampen betreiben zu können. Diese Schaltungseigenschaft ist Ursprung der alternativen Bezeichnung Spannungsresonanz für die Reihenresonanz.

Phasenwinkel

Der Phasenwinkel (Phasenverschiebung) [math]\varphi[/math] bei Resonanz beträgt

[math] \varphi_r = \arctan{\frac{0}{R}} = 0 \, [/math]

also keine Phasenverschiebung, da sich die Schaltung wie ein reiner Wirkwiderstand verhält.

Kreisgüte

Die Kreisgüte Q, auch Gütefaktor, Resonanzüberhöhung oder Resonanzschärfe, ist der Kehrwert des Verlustfaktors d. Für die Reihenschaltung von R, L und C erhält man:

[math] Q = \frac{1}{d} = \frac{\omega_r L}{R} = \frac{1}{R \cdot \omega_r C} = \frac{1}{R} \sqrt{\frac{L}{C}} \, [/math]

Damit gibt sich für die Resonanzspannung:

[math] U_r = U_{rC} = U_{rL} = \frac{I_r}{\omega_r C} = I_r \omega_r L = Q U [/math]

Sonderfälle

Reihenresonanz mit allen Begleiterscheinungen kann auch bei Resonatoren beobachtet werden, wo keine Kondensatoren oder Spulen zu erkennen sind, sondern sie durch den technischen Aufbau bedingt ist. Dann können unerwünschte und unvermeidliche Nebeneffekte auftreten. In der Umgebung der Reihenresonanz ist die Impedanz erheblich geringer als erwartet.

Reihenresonanz bei Kondensatoren

Jeder Kondensator benötigt Anschlussdrähte, die im Ersatzschaltbild als Induktivität dargestellt werden, die mit dem Kondensator eine Reihenschaltung bildet. Diese ESL (von engl. equivalent series inductance L) führt zusammen mit der Kapazität zu einer charakteristischen Eigenresonanz, bei der die Impedanz der Anordnung minimal wird. Dieser Effekt ist noch ausgeprägter bei Wickelkondensatoren, deren Folien wie eine Spule gewickelt sind. Wickelkondensatoren sind deshalb für Hochfrequenzzwecke vielfach ungeeignet.

Ist bei einer Anwendung eine geringe Impedanz über einem weiten Frequenzbereich erforderlich, schaltet man Kondensatoren verschiedener Bauarten parallel. Bekannt ist das Parallelschalten eines Elektrolytkondensators mit einem Keramikkondensator oder auch das Parallelschalten von Keramikkondensatoren verschiedener Baugrößen.

Reihenresonanz von Spulen

Spulen besitzen nicht nur zwischen den Anschlussdrähten eine geringe Kapazität, auch zwischen den einzelnen Windungen. Zusammen mit den dazwischen liegenden Induktivitäten entsteht ein Gebilde aus verteiltem L und C, das – ähnlich wie ein Dipol – mehrere Resonanzfrequenzen besitzt, die mit den Formeln der Leitungstheorie berechnet werden können.

Speist man eine lange Zylinderspule mit hochfrequentem Strom, kann man mit einem Oszilloskop die Spannung als Funktion der Länge messen. Folgt diese einer im Bild dargestellten Funktion, liegt Reihenresonanz vor, obwohl kein Kondensator zu erkennen ist. Die Gesamtspannung der Spule ist dann sehr gering und kommt einem selektiven Kurzschluss nahe. Die Gesamtimpedanz ist erheblich kleiner als der rechnerische Wert des induktiven Widerstandes.

Die tiefste Resonanzfrequenz kann durch eine besondere Wickeltechnik vergrößert werden. Bei einer Kreuzwickelspule ist der mittlere Abstand aufeinanderfolgender Windungen erheblich größer als bei üblicher Zylinderwicklung, wodurch sich die Kapazität aufeinanderfolgender Windungen verringert. Langgestreckte, einlagig gewickelte Zylinderspulen besitzen die höchste Eigenresonanzfrequenz. Bei sehr vielen Windungen, wie bei der Sekundärspule eines Tesla-Transformators, sinkt sie allerdings auf etwa 500 kHz. Eine Faustregel besagt, dass die tiefste Reihenresonanz einer (Vakuum-)Wellenlänge entspricht, die etwa doppelt so lang ist wie die Drahtlänge der Spule.

Reihenresonanz bei Schwingquarzen

In vielen elektronischen Schaltungen ersetzt man Schwingkreise durch Schwingquarze wegen ihrer teilweise erheblich besseren Eigenschaften. Obwohl diese Kristalle keine Spulen oder Kondensatoren besitzen, zeigen sie auf ganz speziellen Frequenzen alle Eigenschaften der Reihenresonanz. Ausgehend von der tiefsten Frequenz verhalten sich diese wie 1:3:5:7:…, sind extrem stabil und weisen erheblich höhere Gütefaktoren als Schwingkreise auf, weshalb man Quarzoszillatoren als Taktgeber in Uhren und Sendern verwendet. Alle Schwingquarze besitzen Parallelresonanz auf einer geringfügig höheren Frequenz.

Reihenresonanz bei Leitungen

Bei Geräten im Radarbereich wird die Eigenschaft von Stichleitungen ausgenutzt, den Abschlusswiderstand abhängig von der Länge L zu transformieren (siehe Leitungstheorie). Streifenleitungen sind wegen der Permittivität des isolierenden Trägermaterials verkürzt.

  • Falls L = λ/2 und ein Ende mit Masse verbunden ist, misst man am anderen Ende ebenfalls null Ohm. Dieses Drahtstück wirkt bei der Wellenlänge der Reihenresonanz wie ein Saugkreis und für Gleichstrom wie ein Kurzschluss. Das gilt unverändert, wenn die Drahtlänge verdoppelt oder verdreifacht wird.
  • Falls L = λ/4 und ein Ende frei ist, also keine Verbindung zu anderen Bauelementen besitzt, misst man am anderen Ende Reihenresonanz, also besonders geringe Impedanz. Das kurze Drahtstück wirkt bei dieser Wellenlänge wie ein perfekter Abblockkondensator und ersetzt diese in LNBs. Im nebenstehenden Bild sieht man sechs λ/4-Leitungen, deren Startpunkte mit einem roten x markiert ist.

Siehe auch


Kategorien: Theoretische Elektrotechnik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Reihenresonanz (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.