Quantenkaskadenlaser - LinkFang.de





Quantenkaskadenlaser


Der Quantenkaskadenlaser (QKL), engl. Quantum Cascade Laser (QCL), ist ein Halbleiterlaser für Wellenlängen im mittleren und fernen Infrarot (Terahertzstrahlung). Im Gegensatz zu normalen Halbleiterlasern wird das Laserlicht nicht durch die strahlende Rekombination eines Elektrons des Leitungsbands mit einem Loch des Valenzbands des Halbleiters erzeugt (Interband-Übergang), sondern durch Intersubband-Übergänge von Elektronen innerhalb des Leitungsbands.

Quantenkaskadenlaser sind noch weitgehend experimentell, es gibt aber bereits Exemplare, die bei Zimmertemperatur im Dauerstrichbetrieb arbeiten.

Geschichte

Das theoretische Konzept für Quantenkaskadenlaser wurde bereits im Jahr 1971 von R. F. Kazarinov und R. A. Suris entwickelt. Die experimentelle Umsetzung jedoch gelang Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson und Alfred Y. Cho erst 1994 an den Bell Laboratories mit Hilfe der Molekularstrahlepitaxie.[1]

Die mit diesem Lasertyp erreichbaren Wellenlängen liegen zurzeit (d.i. Anfang 2004) im Bereich zwischen 3,5 µm und 141 µm. Dieser Wellenlängenbereich wird durch andere Lasertypen so gut wie nicht erschlossen, daher sind QCLs hier nahezu konkurrenzlos. Zudem lassen sich Quantenkaskadenlaser, ebenso wie andere Halbleiterlaser, mit sehr kleinen Abmessungen herstellen.

Aufbau

Der Aufbau des Quantenkaskadenlasers basiert auf einem Halbleiterlasermaterial, das aus einer Vielzahl von Schichten besteht, deren Dicke im Bereich einiger Nanometer liegt. Dabei werden abwechselnd sehr dünne Schichten (wenige nm) von Materialien mit unterschiedlicher Bandlücke (z.B. GaAs und AlGaAs) verwendet. Dadurch entstehen sogenannte Quantenfilme, und damit ein elektrisches Potential, das sich in Abhängigkeit vom Material räumlich ändert. Die darin entstehenden Quantenzustände der Elektronen können mit benachbarten Zuständen koppeln, wodurch diese aufspalten und sogenannte Minibänder bilden (siehe Bändermodell). Die Funktionsweise des Lasers hängt kritisch von der richtigen Abfolge unterschiedlicher Schichtdicken der Quantenfilme sowie der Dotierung ab.

Dazu wird eine Reihe von Halbleiterschichten als zweidimensionale Quantentöpfe hergestellt, die mehrere quantisierte Energieniveaus relativ zum Material-Energieniveau haben. Durch Anlegen einer Spannung werden die absoluten quantisierten Energieniveaus angrenzender Quantentöpfe so zueinander ausgerichtet, dass Elektronen durch quantenmechanisches Tunneln von einem niedrigen Energieniveau des einen Quantentopfs in ein hohes Energieniveau eines anderen gelangen können. Dann kann der Energieunterschied zwischen hohem und niedrigem Energieniveau in Form von Photonen abgegeben werden, und die nächste gleichartige Halbleiter-Schichtfolge (Kaskade) durchlaufen werden.

Senkrecht zu den Quantenfilmen wird eine Spannung angelegt. Nun können Elektronen durch die Quantenfilme hindurchtreten, wobei sie stets Quantenzustände einnehmen. Der für die Emission relevante Bereich besteht aus zwei unterschiedlichen Zonentypen, die sich mehrmals (z.B. 25 Mal) abwechselnd wiederholen, nämlich Emissionszone und Injektorbereich. Im Injektorbereich befinden sich Minibänder, die zur Zwischenlagerung von Elektronen dienen. Die Emissionszone kann zum Beispiel aus drei unterschiedlichen Energieniveaus bestehen. Elektronen gehen unter Emission eines Photons aus den höheren Niveaus in die niedrigeren über (siehe dazu Laser unter dem Stichwort Dreiniveau). Neben dem Fabry-Perot-Resonator, der durch die Stirnflächen des Materials gebildet wird, wird zur Erzeugung monochromatischer Strahlung das DFB-Konzept (engl. distributed feedback) eingesetzt.

Anwendungsfelder für diese Lasertypen sind beispielsweise die Spurengasanalyse, die Freistrahlübertragungstechnik sowie die Medizintechnik.

Einzelnachweise

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho: Quantum Cascade Laser. In: Science. 264, 1994, S. 553–556, doi:10.1126/science.264.5158.553 .

Weblinks

  • J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho: Quantum Cascade Laser. In: Science. 264, 1994, S. 553–556, doi:10.1126/science.264.5158.553 .

Kategorien: Laserstrahlquelle | Quantenphysik | Festkörperphysik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Quantenkaskadenlaser (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.