Principia Mathematica - LinkFang.de





Principia Mathematica


Dieser Artikel beschreibt die Principia Mathematica von Russell und Whitehead. Für das Buch von Isaac Newton über physikalische Gesetze siehe Philosophiae Naturalis Principia Mathematica.

Principia Mathematica („mathematische Prinzipien“ bzw. „Mathematische Grundlagen“) ist ein Werk in drei Bänden über die Grundlagen der Mathematik von Bertrand Russell und Alfred North Whitehead, erstmals erschienen zwischen 1910 und 1913. Die Principia Mathematica stellen den Versuch dar, alle mathematischen Wahrheiten aus einem wohldefinierten Satz von Axiomen und Schlussregeln (Inferenzregeln der symbolischen Logik) herzuleiten. Auf mehreren Hundert Seiten wird zunächst ein Repertoire aus Begriffen und Symbolen dargelegt, welches das Fundament zur späteren Herleitung der Arithmetik bildet. Die Herleitung der Mathematik aus der Logik sollte einige bis dahin verbreitete Anschauungen über das Wesen mathematischer Erkenntnisse widerlegen, nämlich, dass diese weder empirisch noch synthetisch apriorisch sind (Letzteres hatte Kant angenommen), sondern sprachlicher Natur und damit formallogisch begründbar, also analytisch apriorisch.

Behandelte Themengebiete

Die Principia Mathematica behandeln nur die Mengentheorie, die Kardinalzahlen, die Ordinalzahlen und die Reellen Zahlen; tiefergehende Sätze aus der reellen Analysis sind nicht enthalten, aber gegen Ende des dritten Bandes wird klar, dass die gesamte bekannte Mathematik im Prinzip aus dem vorgestellten Formalismus entwickelt werden kann.

Vorläufer

Eine wichtige Inspiration und Grundlage der Principia Mathematica bildet Gottlob Freges Arithmetik von 1893, deren Basis ein Mengenkalkül ist, in dem Russell die Russellsche Antinomie entdeckte, die sich aus der Menge aller Mengen, die sich nicht selbst enthalten ergibt. Diesen Widerspruch und andere Widersprüche der naiven Mengenlehre versuchte er durch seine Typentheorie von 1908 zu lösen, die er dann zur Grundlage der Principia Mathematica machte.[1]

Das zweite wichtige Fundament der Principia Mathematica ist die Formelsammlung (Formulaire) von Giuseppe Peano in den Fassungen von 1897/98 und 1903; von dort übernahm Russell die symbolische Notation und viele Formeln, bereits auch schon in seiner Typentheorie.

Folgen

Die offene Frage, ob dieses System von Axiomen und Ableitungsregeln widerspruchsfrei ist und ob sich alle wahren Sätze auf diese Weise herleiten ließen, versuchte das Hilbertprogramm ab 1922 positiv zu entscheiden. Logiker, die sich daran beteiligten, legten in der Regel die Principia Mathematica zugrunde, etwa Paul Bernays und Kurt Gödel, die für Teilsysteme die Widerspruchsfreiheit und Vollständigkeit nachwiesen. Gödel bewies dann aber 1931 in seiner Arbeit Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. einen Unvollständigkeitssatz, der zeigte, dass diese Erwartung, die man in die Principia Mathematica setzte, nicht erfüllbar ist.

Literatur

Weblinks

Referenzen

  1. Russell: Mathematical logic as based on the theory of types (PDF; 1,9 MB), in: American Journal of Mathematics 30 (1908), S. 222–262.

Kategorien: Sprachphilosophisches Werk | Geschichte der Mathematik | Bertrand Russell | Alfred North Whitehead | Philosophie der Mathematik | Sachbuch (Mathematik) | Mathematische Logik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Principia Mathematica (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.