Poincaré-Gruppe - LinkFang.de





Poincaré-Gruppe


Die Poincaré-Gruppe (benannt nach dem französischen Mathematiker und Physiker Henri Poincaré) ist eine spezielle Gruppe in der Mathematik, die Anwendungen in der Physik gefunden hat.

Historisches

Die Poincaré-Gruppe taucht historisch zum ersten Mal bei der Untersuchung der Invarianzen der Elektrodynamik durch Poincaré, Lorentz und andere auf und spielte eine entscheidende Rolle bei der Formulierung der speziellen Relativitätstheorie. Insbesondere wurde die Poincaré-Gruppe nach der Formalisierung der Relativitätstheorie durch Hermann Minkowski zu einer wichtigen mathematischen Struktur in allen relativistischen Theorien, darunter in der Quantenelektrodynamik.

Geometrische Definition

Die Poincaré-Gruppe ist die affine Invarianzgruppe des pseudo-euklidischen Minkowskiraumes [math]\mathbb{R}^{3+1}[/math], insbesondere ist der Minkowskiraum bezüglich der Poincaré-Gruppe ein homogener Raum, dessen Geometrie sie im Sinne des Erlanger Programms definiert. Sie unterscheidet sich von der Lorentz-Gruppe, die die lineare Invarianzgruppe des Minkowskiraums ist, durch die Hinzunahme von Translationen. Sie ähnelt daher in ihrer Struktur der euklidischen Gruppe im dreidimensionalen Raum, die alle geometrischen Kongruenzabbildungen enthält. Tatsächlich ist die Euklidische Gruppe als Untergruppe in der Poincaré-Gruppe enthalten. Der wesentliche Unterschied besteht jedoch darin, dass die Poincaré-Gruppe nicht die Längen und Winkel im dreidimensionalen Raum erhält, sondern die bezüglich des indefiniten Pseudo-Skalarprodukts im Minkowskiraum definierten Längen und Winkel. Insbesondere erhält sie sogenannte Eigenzeitabstände in der speziellen Relativitätstheorie.

Algebraische Definition

Die Poincaré-Gruppe ist das semidirekte Produkt der Lorentzgruppe [math] O(3,1)[/math] und der Gruppe der Translationen im [math]\mathbb{R}^{3+1}[/math]. Jedes Element der Poincaré-Gruppe ist also als Paar

[math](\Lambda, \mathbf{a}):\quad \Lambda \in O(3,1), \mathbf{a}\in \mathbb{R}^{3+1}[/math]

darstellbar, und die Gruppenmultiplikation ist durch

[math](\Lambda, \mathbf{a})\cdot (\Lambda', \mathbf{a}')=(\Lambda\cdot \Lambda',\mathbf{a}+\Lambda(\mathbf{a}')) [/math]

gegeben, wobei die Lorentztransformation [math]\Lambda[/math] in ihrer natürlichen Wirkung als Automorphismus auf [math]\mathbb{R}^{3+1}[/math] wirkt.

Weitere Eigenschaften

Die Poincaré-Gruppe ist eine 10-dimensionale nicht-kompakte Liegruppe. Sie ist ein Beispiel einer nicht halbeinfachen Gruppe.

Die Lie-Algebra der Poincaré-Gruppe wird durch die folgenden Relationen definiert:

[math]\begin{align} [P_\mu, P_\nu] &= 0 \\ [M_{\mu\nu}, P_\kappa] &= \eta_{\mu\kappa} P_\nu-\eta_{\nu\kappa} P_\mu \\ [M_{\mu\nu}, M_{\kappa\lambda}] &= \eta_{\mu\kappa} M_{\nu\lambda}- \eta_{\mu\lambda} M_{\nu\kappa}- \eta_{\nu\kappa} M_{\mu\lambda} + \eta_{\nu\lambda} M_{\mu\kappa} \end{align}[/math]

wobei [math]P_\mu[/math] die vier infinitesimalen Erzeuger der Translationen und [math]M_{\mu\nu}[/math] die sechs infinitesimalen Erzeuger der Lorentz-Transformationen sind.


Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Poincaré-Gruppe (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.