Phasenwinkel - LinkFang.de





Phasenwinkel


Dieser Artikel behandelt den Phasenwinkel in der Physik und Technik; zur Bedeutung in der Astronomie siehe Tag-Nacht-Grenze
Physikalische Größe
Name Phasenwinkel, Phase
Formelzeichen der Größe [math]\varphi[/math]
Größen- und
Einheitensystem
Einheit Dimension
SI rad 1

Der Phasenwinkel oder die Phase gibt die aktuelle Position im Ablauf eines periodischen Vorgangs an. Für sinusförmige Verläufe ist die Phase die Größe, von der die Winkelfunktion unmittelbar abhängt[1][2][3] (mathematisch als „Argument“ der Funktion bezeichnet). Sie hat daher die Dimension eines Winkels.

Man kann sich den Verlauf einer harmonischen Schwingung durch einen Zeiger veranschaulichen, der sich mit konstanter Winkelgeschwindigkeit um den Koordinatenursprung dreht (siehe Abbildung). Wenn man diesen Zeiger auf eine der beiden Koordinatenachsen projiziert, führt der Endpunkt der Projektion dabei die harmonische Schwingung aus. Der Winkel, den der Zeiger mit der horizontalen Achse einschließt, ist der Phasenwinkel.

Definitionen

Für die Kosinus-Funktion

[math]x(t)=\hat x \,\cos(\omega t+\varphi_0)[/math]

werden in den Normen folgende Größen definiert:

  • der Phasenwinkel [math]\varphi (t) =\omega t + \varphi_0[/math] als das linear von der Zeit abhängige Argument dieser Funktion,
  • die Kreisfrequenz [math]\omega=2\pi f=2\pi/T[/math] als Konstante mit der Frequenz [math]f[/math] oder der Periodendauer [math]T[/math],
  • der Nullphasenwinkel [math]\varphi_0\ [/math] als Phasenwinkel zum Zeitpunkt [math]t=0[/math].

Daran gekoppelt ist bei zwei gleichfrequenten sinusförmigen Schwingungen

  • der Phasenverschiebungswinkel [math]\Delta \varphi[/math] als die Differenz der Phasenwinkel bzw. Nullphasenwinkel der beiden Schwingungen. Teilweise wird diese Größe auch als „Phasendifferenz“, „Phasenunterschied“ oder „Phasenverschiebung“ bezeichnet.
    Anders als der Phasenwinkel ist der Phasenverschiebungswinkel zeitlich eine Konstante.

Anwendungen

  • Elektrotechnik:
  • Interferenz: Bei einer Superposition zweier oder mehrerer Wellen muss der aktuelle Phasenwinkel aller beteiligten Wellen beachtet werden. Sind die Wellen in dem betrachteten Punkt gleichphasig, so interferieren sie konstruktiv. Zwei gegenphasige Wellen gleicher Amplitude löschen sich gegenseitig aus (destruktive Interferenz).
  • Phasenmodulation: Gezielte Beeinflussung des Phasenwinkels zu Modulierung eines Trägers in der Nachrichtentechnik.

Einzelnachweise

  1. DIN 1311-1 (2000): Schwingungen und schwingungsfähige Systeme.
  2. DIN 5483-1 (1983): Zeitabhängige Größen
  3. DIN 40110-1 (1994): Wechselstromgrößen

Kategorien: Theoretische Elektrotechnik | Schwingung

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Phasenwinkel (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.