Pascalsche Pyramide - LinkFang.de





Pascalsche Pyramide


Die Pascalsche Pyramide ist die dreidimensionale Verallgemeinerung des Pascalschen Dreiecks. Sie enthält die Multinomialkoeffizienten dritter Ordnung (Trinomialkoeffizient), d.h. die Koeffizienten von [math](a+b+c)^n [/math] stehen auf Ebene n+1. Wie im Pascalschen Dreieck beginnt die Pascalsche Pyramide mit einer einzelnen 1 auf der obersten Ebene (der „Spitze“ der Pyramide). Jede weitere Zahl ist die Summe der drei über ihr stehenden Zahlen. Alle besonderen Eigenschaften des Pascalschen Dreiecks (siehe z. B. Sierpinski-Dreieck, Symmetrie) lassen sich sinngemäß auch auf die Pascalsche Pyramide anwenden.

Alternative Konstruktion

Die Trinomialkoeffizienten sind gegeben durch

[math]\frac{(i+j+k)!}{i!\,j!\,k!\;}[/math] mit [math]\;i+j+k=n\,.[/math]

Die Identität

[math]\frac{(i+j+k)!}{i!\,j!\,k!} = \frac{(i+j+k)!}{(i+j)!\,k!} \cdot \frac{(i+j)!}{i!\, j!}[/math]

legt folgende Konstruktionsvorschrift für die (n+1)-te Ebene nahe:

  1. Bilde zunächst die drei Seiten des Dreiecks. Diese entsprechen der (n+1)-ten Zeile im Pascalschen Dreieck.
  2. Fülle nun die m -te Zeile mit den Einträgen aus der m -ten Zeile des Pascalschen Dreiecks, multipliziert mit dem an den Seiten bereits eingetragenen Faktor.

Die ersten sieben Ebenen

1. Ebene

                                 1

2. Ebene

                                 1 
1 1

3. Ebene

                                 1 
2 2
1 2 1

4. Ebene

                                 1
3 3
3 6 3
1 3 3 1

5. Ebene

                                 1
4 4
6 12 6
4 12 12 4
1 4 6 4 1

6. Ebene

                                  1
5 5
10 20 10
10 30 30 10
5 20 30 20 5
1 5 10 10 5 1

7. Ebene

                                  1
6 6
15 30 15
20 60 60 20
15 60 90 60 15
6 30 60 60 30 6
1 6 15 20 15 6 1

Eigenschaften

  • Die Summe aller Zahlen der Ebene n ist: [math]3^{n-1}[/math]
  • Die Summe aller Zahlen von der ersten bis zur n -ten Ebene ist: [math]\frac{3^n-1}{2}[/math]

Zusammenhang mit dem Sierpinski-Tetraeder

Werden im Pascalschen Tetraeder gerade und ungerade Zahlen unterschieden, ergibt sich ein Zusammenhang mit dem Sierpinski-Tetraeder. Die geraden Zahlen entsprechen dabei den Lücken im Sierpinski-Tetraeder. Dabei müssen [math]2^a[/math] Ebenen berücksichtigt werden, um den [math]a[/math]-ten Iterationsschritt bei der Konstruktion des Sierpinski-Tetraeders zu erhalten.

Verallgemeinerung

Analog lässt sich das [math]n[/math]-dimensionale Pascalsche Simplex aus den weiteren Multinomialkoeffizienten definieren.

Siehe auch

Kombinatorik, Wahrscheinlichkeitsrechnung, Polynom, Binomialkoeffizient

Weblinks


Kategorien: Diskrete Mathematik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Pascalsche Pyramide (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.