Die Parallelschaltung – auch Nebenschaltung genannt – bezeichnet in der Elektrotechnik die Verbindung zweier oder mehrerer zweipoliger Bauelemente oder Netzwerke in einer Schaltung so, dass alle ihre gleichnamigen Pole jeweils gemeinsam verbunden sind.[1] Werden bei gepolten Bauelementen (z. B. Batterien, Dioden, Elektrolytkondensatoren) ungleichnamige Pole miteinander verbunden, spricht man von einer antiparallelen Schaltung. Bei ungepolten passiven Bauteilen entfällt diese Unterscheidung. Die Anzahl der parallelgeschalteten Elemente ist beliebig. Als Gegenstück zur Parallelschaltung gibt es als weitere wesentliche Grundschaltung die Reihenschaltung.
Die Parallelschaltung mehrerer Elemente hat folgende Merkmale:
In der Verfahrenstechnik sind Druck- und Temperaturdifferenzen physikalische Analogien zur Potentialdifferenzen. So können zum Beispiel für Kühlkreisläufe oder Wärmeübergänge elektrische Ersatzschaltbilder gebildet werden, um deren Eigenschaften nach den Regeln der Elektrotechnik zu berechnen.
Lineare elektrische Netzwerke | |
---|---|
Ideales Element | |
| |
Elektrisches Bauelement | |
Reihen- und Parallelschaltung | |
Netzwerkumformungen | |
Generatorsätze | Netzwerksätze |
Methoden der Netzwerkanalyse | |
Zweitor-Parameter | |
Bei ohmschen Widerständen gilt das ohmsche Gesetz
worin [math]U[/math] die elektrische Spannung, [math]R[/math] der elektrische Widerstand und [math]I[/math] die elektrische Stromstärke sind. Dieses gilt für Gleichgrößen, sowie Effektivwerte und Momentanwerte bei mit der Zeit veränderlichen Größen.
Der Gesamtwiderstand einer Parallelschaltung nimmt mit jedem weiteren ohmschen Verbraucher ab. Der Gesamtwiderstand ist also stets kleiner als der kleinste Einzelwiderstand. Eine Ausnahme ist ein Parallelschwingkreis an Wechselspannung.
Die elektrische Spannung [math]U[/math] ist für alle Teilzweige in der Frequenz, Phasenwinkel und Amplitude identisch.
Bei der Parallelschaltung verteilt sich die Stromstärke [math]I_\mathrm{ges}[/math] nach der kirchhoffschen Knotenregel auf die einzelnen Zweige. Die Summe der Teilstromstärken ist gleich der Gesamtstromstärke.
Bei Wechselstrom durch Bauelemente mit Blindwiderstand (Spulen, Kondensatoren) addieren sich die Teilströme pytagoreisch zum Gesamtstrom. In Einzelfällen kann die Teilstromstärke eines Bauelementes der Parallelschaltung die Gesamtsstromstärke sogar übersteigen (Stromüberhöhung).
Die Gesamtleistung ist die Summe der Leistungen eines jeden Verbrauchers:
Eine Parallelschaltung von idealen Spannungsquellen führt zwischen den Quellen zu unbegrenzt hohen Strömen.
Wird mehr Strom vom Verbraucher benötigt, als eine einzelne Quelle liefern kann, so dass eine Parallelschaltung von Spannungsquellen erforderlich wird, so ist dies nur bedingt mit realen Quellen möglich. Einzelheiten werden unter Spannungsquelle#Parallelschaltung angegeben.
Bei der Parallelschaltung zweier potentialfreier oder gleichartig geerdeter Stromquellen (Begriff im Sinne der Schaltungstheorie, also keine Spannungsquellen!) bildet sich eine Gesamtstromstärke [math]I_\mathrm{ges}[/math] gleich der Summe der Teilstromstärken [math]I_1[/math], [math]I_2[/math] usw., wobei deren Vorzeichen nach der Knotenregel zu beachten sind.
So ist es möglich, mit der Parallelschaltung von Labornetzteilen mit Strombegrenzung einen höheren Gleichstrom zu erzielen, als ein Einzelgerät liefern kann. Auch Wechselströme aus Stromwandlern lassen sich in ihren Augenblickswerten summieren oder nach Umpolung eines Wandlers subtrahieren.[2]
Die Abbildung rechts zeigt zwei Widerstände [math]R_1[/math], [math]R_2[/math] mit derselben Leitfähigkeit [math]\gamma[/math] und ihren Leitwerten
und dem Gesamtleitwert
Allgemein für Parallelschaltungen gilt
Eine alternative, einfache Schreibweise erlaubt der Parallelitätsoperator:
Der Gesamtwiderstand von [math]N[/math] parallelgeschalteten Widerständen mit demselben Widerstandswert [math]R_1 = R_2 = \ldots = R_N = R[/math] ist gleich
Bei der Parallelschaltung von Kondensatoren ist die Gesamtkapazität gleich der Summe der Einzelkapazitäten:
Bei der Parallelschaltung von nicht gekoppelten Spulen ist die Gesamtinduktivität gleich dem Kehrwert der Summe der Kehrwerte der Einzelinduktivitäten (Berechnung wie für parallele Widerstände):
Die Parallelschaltung von Impedanzen [math]\underline Z[/math] bzw. Admittanzen [math]\underline Y[/math] ergibt sich wie bei der Parallelschaltung von Widerständen bzw. Leitwerten, allerdings wird hierbei komplex gerechnet:
Dioden können nur unter bestimmten Bedingungen parallelgeschaltet werden, wenn der Strom eine einzelne Diode überlasten würde. Da die Flussspannung mit steigender Temperatur sinkt, ist eine gleichmäßige Stromaufteilung nur dann gewährleistet, wenn:
In der Regel muss jede Diode über einen eigenen Vorwiderstand linearisiert werden. Dieses vergrößert zwar die Verluste, verhindert aber eine ungleiche Stromaufteilung in den Dioden.
Antiparallel geschaltete Dioden sind zueinander gegensinnig parallel (Anode an Kathode und umgekehrt). Solche Schaltungen werden zum Beispiel zur Spannungsbegrenzung einer Wechselspannung auf den Wert der Flussspannung (bei Siliziumdioden ca. 0,7 V) eingesetzt. Weiterhin kann damit zum Beispiel eine Leuchtdiode mit antiparalleler Schutzdiode an Wechselspannung betrieben werden oder (bei Antiparallelschaltung mit einer andersfarbigen LED) einen Polaritätswechsel anzeigen.
Antiparallel zusammengeschaltete Selendioden wurden auch als sogenannte Gehörschutzdioden in Telefonen eingesetzt; sie begrenzten durch ihre nichtlineare, jedoch „weiche“ Kennlinie Knackgeräusche auf ein erträgliches Maß, ohne starke Verzerrungen bei lauten Gesprächen hervorzurufen.
Gleiche Bipolartransistoren können nur dann zur Erhöhung des Stromes parallelgeschaltet werden, wenn durch Emitterwiderstände (Stromgegenkopplung) in jedem Zweig für ausreichend gleiche Stromaufteilung gesorgt wird. Die Ursache ist eine mit steigender Temperatur sinkende Basis-Emitter-Spannung, wodurch sich der Basisstrom und in Folge der Kollektorstrom erhöhen, sowie steigende Stromverstärkung. Hilfreich ist zusätzlich eine enge thermische Kopplung. Die Basis- und Kollektoranschlüsse können unter diesen Bedingungen parallelgeschaltet werden.
Gleichartige Leistungs-MOSFET und IGBT können im Schaltbetrieb parallelgeschaltet werden, da deren Temperaturcharakteristik zu einer gleichmäßigen Stromaufteilung führt. Trotzdem ist es meist sinnvoll, einen Widerstand mit kleinem Wert einzufügen (ca. 0,1–0,5 Ω), um die Lastverteilung zu optimieren. Bei der Dimensionierung ist die joulesche Wärme des Widerstandes zu beachten. Das obige gilt allerdings nur für den Schaltbetrieb. Im Analogbetrieb führt der negative Temperaturkoeffizient der Gate-Schwellspannung dazu, dass immer nur einer der Transistoren den gesamten Strom aufnimmt. Da die Streuung der Gate-Schwellspannung sehr groß ausfallen kann, sind relativ große (im Vergleich zu Bipolartransistoren) Drainwiderstände nötig, um diese Differenzen zu kompensieren.
Gasentladungslampen können nicht direkt parallelgeschaltet werden; aufgrund ihres negativen differenziellen Innenwiderstands (siehe Gasentladung) würde nur eine von ihnen leuchten. Gasentladungslampen benötigen in Reihe ein Vorschaltgerät bzw. einen Vorwiderstand zur Strombegrenzung. Gemeinsam mit diesem Vorschaltgerät können sie wie auch andere Verbraucher parallelgeschaltet werden.