Optischer Fluss - LinkFang.de





Optischer Fluss


Der optische Fluss einer Bildsequenz ist das Vektorfeld der in die Bildebene projizierten Geschwindigkeit von sichtbaren Punkten des Objektraumes im Bezugssystem der Abbildungsoptik.

Der optische Fluss ist eine wichtige Repräsentation von Bewegungsinformation in frühen Stufen der Bildverarbeitung. Sie unterstützt, wie die Segmentierung nach Farben und Texturen, die Zuordnung von Punkten zu Objekten. Anwendungsbeispiele sind die optische Computermaus, die Bildstabilisierung von Kameras, die Motion Compensation in der Video-Kompression und die Sichtnavigation von Robotern und Tieren.

Als optischer Fluss wird auch das (angestrebte) Ergebnis eines Rechenverfahrens oder gar das eingesetzte Verfahren bezeichnet. Wichtige Methoden sind differentielle Verfahren, die in der Regel bildpunktweise arbeiten, und blockweise arbeitenden Verfahren.

Methodik und Anwendungen

Der lokale optische Fluss wird aus Mustern im Bild in einer mehr oder weniger großen Umgebung eines betrachteten Bildpunktes geschätzt. Aus dem lokalen Gradienten kann nur die zum Gradienten parallele Komponente des Flussvektors bestimmt werden. Dieses grundsätzliche Problem bezeichnet man als Aperturproblem.

Ob der interessierende Vektor genau bestimmt werden kann, hängt also davon ab, ob innerhalb des betrachteten Gebietes G Grauwert-Gradienten in unterschiedliche Richtungen vorliegen. Außerdem ist es notwendig, eine Modellvorstellung davon zu haben, welchen prinzipiellen Verlauf der optische Fluss innerhalb des betrachteten Gebietes haben kann; im einfachsten Fall wird angenommen, dass der optische Fluss innerhalb kleiner Gebiete als konstant betrachtet werden kann. Kompliziertere Verläufe des Flussfeldes (z. B. affine Modelle) sind möglich und werden in leistungsfähigen Verfahren eingesetzt. Ein Interest-Operator liefert jene Punkte, deren Flussvektor besonders sicher bestimmt werden kann. In einigen Ansätzen wird nur an diesen ausgewählten Punkten der Fluss berechnet (feature point tracking).

Blockweise arbeitende Verfahren sind der photogrammetrische Blockausgleich und die Blockkorrelation (minimierte Summe der absoluten Differenzen, normalisierte Kreuzkorrelation). Eine Sonderform der blockweisen Bewegungsschätzung ist die auf der Fourier-Transformation aufbauende Phasenkorrelation (Inversion des normalisierten Kreuzleistungsdichtespektrums).

Differenzieller optischer Fluss

Die Berechnung des optischen Flusses mithilfe von differenziellen Methoden geht auf das 1981 am MIT entwickelte Verfahren von Berthold Horn und Brian Schunck[1] zurück.

Man nimmt an, dass die Helligkeit [math]E[/math] an entsprechenden Stellen der Einzelbilder in der Bildsequenz konstant ist. Dann folgt aus der Ableitung

[math] \frac{dE}{dt} = \frac{\partial E}{\partial t} + \frac{\partial E}{\partial x}\frac{dx}{dt}+ \frac{\partial E}{\partial y}\frac{dy}{dt} [/math]

als notwendige Bedingung die Bestimmungsgleichung für die Geschwindigkeiten:

[math] \frac{\partial E}{\partial t} + \frac{\partial E}{\partial x}\frac{dx}{dt}+ \frac{\partial E}{\partial y}\frac{dy}{dt} = 0. [/math]

(Vergleiche Kontinuitätsgleichung)

Die Lösung dieser Gleichung ist im Sinne von Jacques Hadamard ein schlecht gestelltes Problem. Daher wird von der Lösung zusätzlich Glattheit gefordert.

Es gibt mehrere Methoden den optischen Fluss zu bestimmen darunter:

Einige bekannte Algorithmen zur Berechnung des optischen Flusses sind in der C-Bibliothek OpenCV implementiert.

Anwendung bei Insekten und beim Menschen

Bienen und andere Insekten mit Facettenaugen nutzen den optischen Fluss, um

geradeaus zu fliegen
Die Drehrate wird so geregelt, dass Attraktor und Repeller des optischen Flusses einander diametral gegenüberliegen.
Hindernissen auszuweichen
Die Flugrichtung wird in eine Richtung mit geringem optischen Fluss geändert.
und Abstände zu schätzen
Je größer bei gegebener Fluggeschwindigkeit das Maximum des optischen Flusses, desto geringer der Abstand. Fliegen können so an der Zimmerdecke landen, indem sie sich rechtzeitig in die Rückenlage drehen.

Ähnlich hilft uns der optische Fluss im Fußgänger- und Straßenverkehr: Wir nehmen die Bewegung der anderen Verkehrsteilnehmer aus den Augenwinkeln wahr und berücksichtigen sie "unbewusst" bei der eigenen Fortbewegung. Objekte mit divergentem Fluss kommen näher.

Quellen

  1. Berthold K. P. Horn, Brian G. Schunck: Determining optical flow. In: Artificial Intelligence. 17 (1-3), 1981, S. 185–203. doi:10.1016/0004-3702(81)90024-2

Weblinks


Kategorien: Photogrammetrie | Bildverarbeitung | Optische Messtechnik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Optischer Fluss (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.