Numerische Apertur - LinkFang.de





Numerische Apertur


Die numerische Apertur (Formelzeichen [math]A_\text{N}[/math], NA oder n.A., von lateinisch apertus, dt. offen) beschreibt das Vermögen eines optischen Elements, Licht zu fokussieren. Der Begriff wurde vom Physiker Ernst Abbe eingeführt.[1] Bei Objektiven bestimmt sie die minimale Größe des in seinem Fokus erzeugbaren Lichtflecks und ist somit eine wichtige, die Auflösung begrenzende Größe.

Genauer ergibt sich die numerische Apertur [math]A_\text{N}[/math] aus dem Produkt des Sinus des halben objektseitigen Öffnungswinkels (Akzeptanzwinkel) [math]\alpha[/math] und dem Brechungsindex n des Materials zwischen Objektiv und Fokus (siehe auch Immersion (Mikroskopie)):

[math]A_\text{N} = n \cdot \sin \alpha [/math]

Damit ist die numerische Apertur eine dimensionslose Größe, also ein rein numerischer Zahlenwert.

Auch bei Lichtwellenleitern wird die numerische Apertur durch den Sinus des Akzeptanzwinkels (manchmal auch Kollimations-/ Divergenzwinkel) der Faser beschrieben und entspricht der Öffnung des aus der Endfläche der Faser wieder austretenden kegelförmigen Lichtbündels.

In Luft (zum Beispiel bei einem Fernrohr) mit [math]n=1[/math] ist die numerische Apertur immer kleiner als eins. Sie kann aber Werte größer als eins annehmen, wenn der Raum zwischen zu mikroskopierender Probe und Mikroskop-Objektiv mit einer Immersionsflüssigkeit gefüllt wird, deren Brechungsindex größer ist als eins. Häufig wird Wasser ([math]n=1{,}33[/math]), Glycerin ([math]n=1{,}47[/math]) oder Öl ([math]n=1{,}51[/math]) benutzt. Dementsprechend beträgt die numerische Apertur für die besten Mikroskop-Objektive etwa 1,2 für Wasser oder 1,4 für Öl, da der maximal mögliche Akzeptanzwinkel bei zirka 70 Grad liegt.

Die maximale Auflösung ist der minimale Abstand zwischen zwei unterscheidbaren Strukturen [math]d_{\rm min}[/math]. In der Mikroskopie ist die Größe des Fokus durch Beugung begrenzt und proportional zur Wellenlänge [math]\lambda[/math] des verwendeten Lichtes sowie umgekehrt proportional zur numerischen Apertur:

[math] d_\text{min} = \frac {1{,}22 \cdot \lambda} {2 \cdot A_\text{N}} = \frac {0{,}61 \cdot \lambda} {A_\text{N}}[/math]

Als Faustformel ergibt sich die folgende Beziehung zur Abschätzung der maximalen Auflösung:

[math] d_\text{min} \approx \frac {\lambda} {A_\text{N}}[/math]

Im Vakuum oder in Luft und großem Öffnungswinkel ([math]n \approx 1 \rightarrow A_\text{N} \lesssim 1[/math]) ergibt sich als Abschätzung:

[math] d_\text{min} \approx \lambda[/math]

Die Auflösung kann über die Beugungsgrenze hinaus erhöht werden durch Ausnutzen nichtlinearer Reaktionen der Moleküle, beispielsweise bei den Analysemethoden STORM, dSTORM, STED oder (f)PALM.

Ein optisches Element, wie zum Beispiel ein Objektiv, wird durch seine Vergrößerung, seine numerische Apertur, den optischen Arbeitsabstand und den rückwärtigen Abbildungsabstand charakterisiert. Mathematisch richtig wird der Öffnungswinkel durch eine Blende in der hinteren Brennebene des Objektivs bestimmt, bautechnisch ist aber die Fassung der ersten Linse limitierend. Dieses ist näherungsweise auch richtig, wie im Rahmen der Fraunhofer-Beugung erläutert wird. Bemerkenswert dabei ist, dass das Objekt unter dem Mikroskop so klein ist, dass das meistens nur 1 mm entfernte Objektiv sich im Fernfeld befindet, da das Nahfeld sich nur über den Bereich einiger Wellenlängen erstreckt.

Anstelle der numerischen Apertur wird vor allem in der Fotografie häufig das Öffnungsverhältnis angegeben. Im Gegensatz zur numerischen Apertur bezieht sich das Öffnungsverhältnis jedoch auf den bildseitigen Öffnungswinkel (siehe Öffnungsverhältnis und Blendenzahl).

Bei optischen Abbildungen sind häufig andere Effekte wie zum Beispiel Aberrationen oder andere Abbildungsfehler so groß, dass das theoretisch mögliche Auflösungsvermögen nicht erreicht werden kann. Als Kompromiss wird hierbei häufig die kritische Blende eingestellt, bei der bei einem vorgegebenen Objektiv in der Praxis das größte Auflösungsvermögen erreicht werden kann.

Literatur

  • Ernst Leitz: Mikroskope. Verlag Leitz, 1897, Kapitel Numerische Apertur, S. 10.
  • Ernst Abbe: Die Lehre von der Bildentstehung im Mikroskop. bearbeitet von Otto Lummer und Fritz Reiche, Verlag Vieweg, 1910.
  • Rainer Danz: Numerische Apertur, Immersion und förderliche Vergrößerung (PDF; 397 kB). In: Innovation. 15, Carl Zeiss AG, 2005, S. 12–16.

Weblinks

Einzelnachweise

  1. Eugene Hecht: Optik. 4. Auflage, Verlag Oldenbourg, 2005, ISBN 3-486-27359-0, Kapitel 5.7 Optische Systeme, S. 357.

Kategorien: Fotografie | Lichtmikroskopie | Optik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Numerische Apertur (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.