Neutroneneinfang - LinkFang.de





Neutroneneinfang


Neutronenanlagerung (Bezeichnung in der Astrophysik) oder Neutroneneinfang (Bezeichnung in der Kernphysik und Kerntechnik; engl. neutron capture) im engeren Sinne ist eine Kernreaktion, bei der ein Atomkern ein Neutron absorbiert, ohne dass dabei Teilchen mit Masse freigesetzt werden. Der Kern gibt die gewonnene Bindungsenergie vielmehr als Gammastrahlung ab. Nach seiner Formelschreibweise – Beispiele siehe unten − wird dieser Reaktionstyp auch n-gamma-Reaktion genannt.[1]

Allerdings werden gelegentlich auch Neutronenreaktionen mit Emission von Masseteilchen als Neutroneneinfang bezeichnet, besonders dann, wenn ihre Anregungsfunktion der der n-gamma-Reaktionen ähnelt. Dies gilt beispielsweise für die n-alpha-Reaktion an Bor-10, wie etwa die Bezeichnung Bor-Neutroneneinfangtherapie zeigt.

Da das Neutron im Gegensatz zum Proton keine elektrische Ladung trägt und daher vom Atomkern nicht abgestoßen wird, kann es sich ihm auch mit geringer Bewegungsenergie leicht nähern. Der Wirkungsquerschnitt für den Einfang ist sogar im Allgemeinen bei thermischer, also sehr kleiner Neutronenenergie besonders groß.

In Sternen läuft die Neutronenanlagerung als s- oder r-Prozess ab. Sie spielt in der kosmischen Nukleosynthese eine wichtige Rolle, denn sie erklärt die Entstehung der Elemente mit Massenzahlen oberhalb etwa 60, also der Atome, die schwerer als Eisen- oder Nickelatome sind. Diese können durch thermonukleare Reaktionen, d. h. durch Kernfusion, in Sternen nicht gebildet werden.

In normaler Umgebung auf der Erde freigesetzte Neutronen werden in den allermeisten Fällen, nachdem sie auf thermische Energie abgebremst sind, von Kernen in dieser Weise eingefangen. Technisch ist der Neutroneneinfang in geeigneten Materialien wichtig für die Steuerung von Kernreaktoren und die Abschirmung gegen Neutronenstrahlung, siehe Neutronenabsorber.

Das nebenstehende Bild zeigt eine Nuklidkarte mit farblicher Kennzeichnung des Wirkungsquerschnitts für Neutroneneinfang (Neutroneneinfangsquerschnitt). Durch Doppellinien hervorgehoben sind die magischen Protonen- und Neutronenzahlen; man erkennt, dass dieser Wirkungsquerschnitt bei solchen magischen Atomkernen meist klein, fern von magischen Zahlen dagegen groß ist.

Neutroneneinfang bei kleinem Neutronenfluss

Bei nicht zu hohem Neutronenfluss, etwa bei Neutronenbestrahlung in einem Kernreaktor, wird jeweils ein Neutron von einem Atomkern eingefangen. Die Massenzahl (Zahl der Nukleonen im Kern) steigt dadurch um 1. Beispielsweise entsteht bei Bestrahlung von natürlichem Gold, 197Au, das Goldisotop 198Au in einem hochangeregten Zustand, der sehr schnell durch Aussendung eines γ-Quants zum Grundzustand des 198Au übergeht. In Formelschreibweise:

[math]\mathrm{^{197}_{\ 79}Au \ \xrightarrow {(n,\gamma)} \ ^{198}_{\ 79}Au}[/math]

oder kurz:

[math]\mathrm{^{197}Au \ (n,\gamma) \ ^{198}Au}[/math]

Das Goldisotop 198Au ist ein β-Strahler, sein Kern zerfällt also durch Emission eines Elektrons und eines Elektron-Antineutrinos zu dem Quecksilberisotop 198Hg.

Der oben erwähnte s-Prozess im Inneren von Sternen läuft im Wesentlichen genauso ab.

Auch am gewöhnlichen Wasserstoff gibt es eine Einfangreaktion mit merklichem Wirkungsquerschnitt:

1H(n,γ)2H + 2,2 MeV

Diese Absorption am Wasserstoff bewirkt, dass ein Leichtwasserreaktor mit Natururan nicht kritisch werden kann.

Neutroneneinfang bei großem Neutronenfluss

Beim r-Prozess im Sterninnern ist die Neutronenflussdichte so hoch, dass der Atomkern zwischen den Neutroneneinfängen "keine Zeit" für den Betazerfall hat, d. h., der mittlere Zeitabstand zwischen den Neutroneneinfängen ist kurz im Vergleich zur Halbwertszeit des Betazerfalls. Die Massenzahl nimmt dadurch stark zu, ohne dass die Ordnungszahl steigt. Erst anschließend zerfallen die entstandenen hoch instabilen Nuklide durch jeweils mehrere aufeinander folgende β-Zerfälle zu stabilen oder leicht instabilen, also langlebigen, Nukliden mit entsprechend höheren Ordnungszahlen.

Siehe auch

Literatur

Einzelnachweis

  1. z. B.: B. L. Cohen, Concepts of Nuclear Physics, McGraw-Hill 1971, S. 338

Kategorien: Kernphysik | Astrophysikalischer Prozess

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Neutroneneinfang (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.