Nagel-Punkt - LinkFang.de





Nagel-Punkt


Der Nagel-Punkt, benannt nach dem deutschen Mathematiker Christian Heinrich von Nagel (1803–1882), der 1835/36 die Existenz dieses Punktes aufzeigte, gehört zu den besonderen Punkten eines Dreiecks. Für ein gegebenes Dreieck ABC betrachtet man die Punkte D, E und F, in denen die Ankreise die Seiten des Dreiecks berühren. Verbindet man diese Berührpunkte mit den gegenüber liegenden Ecken des Dreiecks (also mit A, B bzw. C), so schneiden sich diese Verbindungsstrecken in einem Punkt N. Dieser wird als Nagel-Punkt des Dreiecks bezeichnet.

Koordinaten

Nagel-Punkt ([math]X_{8}[/math])
Trilineare Koordinaten [math]\frac{b+c-a}{a} \, : \, \frac{c+a-b}{b} \, : \, \frac{a+b-c}{c}[/math]
Baryzentrische Koordinaten [math](b+c-a) \, : \, (c+a-b) \, : \, (a+b-c)[/math]

Eigenschaften

  • Betrachtet man außer dem Nagel-Punkt N des Dreiecks ABC auch den Inkreismittelpunkt I und den Schwerpunkt S, dann liegen die Punkte N, S und I auf einer Geraden, der Nagel-Geraden, und es gilt [math]\overline{NS} : \overline{SI} = 2 : 1[/math], wobei der Schwerpunkt S zwischen den Punkten N und I liegt. In dieser Eigenschaft weist die Nagel-Gerade eine Analogie zur eulerschen Geraden auf.
  • Der Spieker-Punkt ist der Mittelpunkt der Verbindungsstrecke von Nagel-Punkt und Inkreismittelpunkt und liegt somit ebenfalls auf der Nagel-Geraden.
  • Der Nagelpunkt und der Gergonne-Punkt sind isotomisch konjugiert.

Literatur

  • Peter Baptist: Historische Anmerkungen zu Gergonne- und Nagel-Punkt. In: Sudhoffs Archiv 71, 1987, 2, S. 230–233

Weblinks


Kategorien: Dreiecksgeometrie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Nagel-Punkt (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.