Multivariate Verteilung - LinkFang.de





Multivariate Verteilung


Eine multivariate Verteilung ist in der Wahrscheinlichkeitsrechnung und in der Statistik die Verteilung eines Zufallsvektors, also einer Zufallsvariablen, deren Werte Vektoren im [math]\R^n[/math] sind. Im zweidimensionalen Fall [math]n=2[/math] spricht man auch von einer bivariaten Verteilung. Die multivariate Verteilung eines Zufallsvektors [math]X = (X_1, \dotsc, X_n)[/math] ist somit ein Wahrscheinlichkeitsmaß auf [math]\R^n[/math], das messbaren Teilmengen [math]A \subseteq \R^n[/math] die Wahrscheinlichkeit zuordnet, dass [math]X[/math] einen Wert aus [math]A[/math] annimmt. Die Verteilungen der einzelnen Komponenten [math]X_i[/math] werden in diesem Zusammenhang die Randverteilungen von [math]X[/math] genannt. Beispiele für multivariate Verteilungen sind die Multinomialverteilung oder die multivariate Normalverteilung.

Einführendes Beispiel

Wir betrachten zwei Zufallsexperimente:

  1. Zweimaliges Würfeln mit einem idealen Würfel. Dies ist äquivalent zu einem Urnenexperiment mit sechs unterscheidbaren Kugeln, wobei zweimal mit Zurücklegen gezogen wird. Es gibt 36 mögliche Ergebnispaare (da wir die Reihenfolge des Würfeln bzw. der Ziehung berücksichtigen), und alle 36 Möglichkeiten sind gleich wahrscheinlich, haben also eine Wahrscheinlichkeit von 1/36.
  2. Ein ähnliches Urnenexperiment, aber ohne Zurücklegen. In diesem Fall kommen die Ergebnisse (1,1),(2,2),…,(6,6) nicht vor, da die i-te Kugel beim zweiten Ziehen nicht vorkommen kann, wenn sie bereits bei der ersten Ziehung herausgenommen wurde. Die übrigen 30 Paare sind gleich wahrscheinlich und haben daher die Wahrscheinlichkeit 1/30.

Diese beiden Experimente ergeben nun zweidimensionale diskrete Zufallsvariablen [math]Z_1[/math] und [math]Z_2[/math], welche die gleichen Randverteilungen haben (jede Zahl von 1 bis 6 ist bei beiden Experimenten in beiden Ziehungen gleich wahrscheinlich und tritt mit Wahrscheinlichkeit 1/6 auf).

Jedoch sind die beiden Ziehungen im ersten Experiment unabhängig, da die gezogene Kugel zurückgelegt wird, während sie im zweiten Experiment nicht unabhängig sind. Das wird am deutlichsten, wenn man sich klarmacht, dass die Paare (1,1),(2,2),…,(6,6) bei einem unabhängigen Experiment jeweils mit Wahrscheinlichkeit 1/36 vorkommen müssen (Produkt der Randwahrscheinlichkeiten 1/6), sie aber beim zweiten Experiment überhaupt nicht auftreten können (Wahrscheinlichkeit 0 haben), da die Kugel nicht zurückgelegt wird.

Die Verteilungen von [math]Z_1[/math] und [math]Z_2[/math] sind daher verschieden; es handelt sich also um ein Beispiel zweier unterschiedlicher diskreter multivariater Verteilungen mit gleichen Randverteilungen.

Zweidimensionale Verteilungsfunktion

Die Verteilungsfunktion einer zweidimensionalen Zufallsvariablen Z=(X,Y) ist folgendermaßen definiert:

[math]F_Z(x,y)=P(X \le x, Y \le y) .[/math]

Falls die betrachtete Zufallsvariable Z eine (zweidimensionale) Dichte fX,Y besitzt, dann ist die Verteilungsfunktion

[math]F_Z\left( x,y\right)= \int_{-\infty}^{y}\int_{-\infty}^{x} f_{X,Y}\left(u,v\right) \mathrm{d} u \, \mathrm{d}v[/math].

Wenn die Zufallsvariable diskret ist, dann kann man die gemeinsame Verteilung mit Hilfe bedingter Wahrscheinlichkeiten so schreiben:

[math] \begin{align} \mathrm{P}(X=x\ \mathrm{und}\ Y=y) & = \mathrm{P}(Y=y \mid X=x) \cdot \mathrm{P}(X=x) \\ & = \mathrm{P}(X=x \mid Y=y) \cdot \mathrm{P}(Y=y) \end{align} [/math]

und im stetigen Fall entsprechend

[math]f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x) = f_{X|Y}(x|y)f_Y(y)\;[/math]

Hier sind fY|X(y|x) und fX|Y(x|y) die bedingten Dichten (Y unter der Bedingung X = x, bzw. von X unter der Bedingung Y = y) und fX(x), fY(y) die Dichten der Randverteilungen von X und Y.

In der Abbildung ist ein Beispiel für die Modellierung der Abhängigkeitsstruktur mit Hilfe von Copulas gezeigt. Insbesondere ist das ein Beispiel dafür, dass eine bivariate Zufallsvariable mit normalen Randverteilungen nicht bivariat normalverteilt sein muss.

Der allgemeine mehrdimensionale Fall

Besitzt die n-dimensionale Zufallsvariable [math]Z=(X_1,\dots,X_n)[/math] eine Dichte, dann ist die Verteilungsfunktion analog zum zweidimensionalen Fall

[math]F_Z \left(x_1,\dots,x_n\right) = \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f_{X_1,\dots,X_n}\left(u_1,\dots,u_n\right) \mathrm{d} u_1 \dots \mathrm{d} u_n[/math].

Es gibt für Randverteilungen mehr Möglichkeiten als im zweidimensionalen Fall, da nun Randverteilungen für jede niedrigere Dimension [math]1\le k\ltn[/math] existieren und man [math]{n \choose k}[/math] Möglichkeiten hat, den Unterraum auszuwählen. Beispielsweise gibt es im dreidimensionalen Fall 3 eindimensionale und 3 zweidimensionale Randverteilungen.

Gemeinsame Verteilung von unabhängigen Zufallsvariablen

Wenn für diskrete Zufallsvariablen [math]\ P(X = x \ \mbox{und} \ Y = y ) = P( X = x) \cdot P( Y = y) [/math] für alle x und y gilt, oder aber für stetige Zufallsvariablen [math]\ f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) [/math] für alle x und y, dann sind X und Y unabhängig.

Siehe auch

Literatur

  • K. V. Mardia, J. T. Kent, J. M. Bibby: Multivariate Analysis. Acad. Press, New York 1979, ISBN 0-12-471250-9. (engl.)
  • Ludwig Fahrmeir, Alfred Hamerle (Hrsg.): Multivariate statistische Verfahren. de Gruyter, New York 1996, ISBN 3-11-008509-7.
  • Joachim Hartung, Bärbel Elpelt: Multivariate Statistik. Oldenbourg, München/ Wien 1999, ISBN 3-486-25287-9.

Kategorien: Stochastik | Wahrscheinlichkeitsverteilung

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Multivariate Verteilung (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.