Michel Rolle - LinkFang.de





Michel Rolle


Michel Rolle (* 21. April 1652 in Ambert, Basse-Auvergne; † 8. November 1719 in Paris) war ein französischer Mathematiker und Mitglied der Académie des sciences.

Rolle war der Sohn eines Ladenbesitzers und im Wesentlichen Autodidakt. Er arbeitete als Gehilfe eines Notars und für verschiedene Anwälte, bevor er 1675 nach Paris ging, wo er bald darauf heiratete. Er schuf sich einen Ruf als Mathematiker und erhielt 1682 von Jean-Baptiste Colbert eine Belohnung für die Lösung eines von Jacques Ozanam gestellten zahlentheoretischen Problems. Colbert verschaffte ihm auch eine kleine Pension und der Kriegsminister François-Michel Le Tellier, marquis de Louvois stellte ihn als Mathematiklehrer für einen seiner Söhne (Camille Le Tellier de Louvois) ein - ein weiterer kleiner Posten im Kriegsministerium war nicht nach Rolles Geschmack, so dass er ihn bald wieder aufgab. Auf den Einfluss von Louvois hin wurde er auch 1685 Mitglied der französischen Akademie der Wissenschaften. 1699 wurde er Pensionnaire Géometre der Akademie. 1708 erlitt er einen Schlaganfall und veröffentlichte danach keine mathematischen Arbeiten mehr.

Rolle war in erster Linie Algebraiker, der sich auch mit diophantischen Gleichungen in der Zahlentheorie beschäftigte. 1690 erschien sein Traktat über Algebra Traité d'algèbre, in der er auch das heute übliche Zeichen für n-te Wurzeln einführte. Auch andere mathematische Notationen setzte er mit durch, so das übliche Zeichen = für die Gleichheit, zuvor eingeführt von Robert Recorde, aber damals nicht allgemein üblich.

In der Analysis bekannt ist der nach ihm benannte[1] Satz von Rolle (1691)[2] über differenzierbare Funktionen. Dieser Satz der Analysis hat bei Rolle seinen Ursprung in einer umfassenderen algebraischen Theorie, die er Theorie der Kaskaden nannte und die im Wesentlichen im Übergang von einem Polynom zu seiner Ableitung bestand, obwohl Rolle selbst noch keine Begriffe der Infinitesimalrechnung benutzte. Er lehnte sie sogar ab, da sie seiner Meinung nach keine neuen Wahrheiten erbringe und im Gegenteil sogar fehlerhaft sei (im Vergleich zu den algebraischen Methoden von Pierre de Fermat und Johann van Waveren Hudde).[3]

Von 1700 bis 1701 kam es in der Pariser Akademie der Wissenschaften zu einer heftigen Auseinandersetzung zwischen Rolle und Pierre Varignon über die von Gottfried Wilhelm Leibniz und Isaac Newton eingeführte Analysis. Rolle setzte die Auseinandersetzung, nachdem in der Akademie keine Einigung zu erzielen war, im Journal des sçavans fort, gestand aber am Ende seinen Fehler ein.

Weblinks

Einzelnachweise

  1. 1846 von Giusto Bellavitis
  2. Veröffentlicht in Démonstration d´une Méthode pour resoudre les Egalitez de tous les degrez
  3. Rolle Du nouveau systême de l'infini, 1703


Kategorien: Geboren 1652 | Gestorben 1719 | Mitglied der Académie des sciences | Mathematiker (17. Jahrhundert) | Franzose | Mann

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Michel Rolle (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.