Der Magnus-Effekt,[1] benannt nach Heinrich Gustav Magnus (1802–1870), ist ein Phänomen der Strömungsmechanik, das die Querkraftwirkung (Kraft) bezeichnet, die ein rotierender runder Körper (Zylinder oder Kugel) in einer Strömung erfährt. Beschrieben wurde der Effekt bereits 100 Jahre vor Magnus von Benjamin Robins,[2] der die Ursache bereits in der Rotation der Kugel vermutete. Magnus gelang hingegen als Erster, eine physikalische Erklärung des Effektes zu geben.
Magnus erklärte den Effekt als erster[3] anhand der Bernoulli-Gleichung, die eine Relation zwischen Druck- und Geschwindigkeitsfeld einer reibungs-, viskositäts- und wirbelfreien Strömung herstellt. Um das experimentell gefundene Geschwindigkeitsfeld[4] zu beschreiben, überlagerte Magnus zwei Geschwindigkeitsfelder: die symmetrische Umströmung eines nicht rotierenden Zylinders und die wirbelfreie Zirkulationsströmung um einen in ruhender Luft rotierenden Zylinder (Bild rechts). In der Summe ist die Strömungsgeschwindigkeit auf der Seite des Zylinders, die sich mit der Anströmung dreht, größer als auf der anderen Seite und nach Bernoulli der Druck kleiner. Im Bild rechts ist das an der Unterseite der Fall, sodass er eine Abtriebskraft erfährt.
Robins[5] wies den Effekt mit Hilfe von kugelförmigen Geschossen aus Musketen nach, deren Läufe leicht seitlich gebogen waren. Hierdurch rollt die Kugel im Lauf seitlich an der äußeren Seite bezüglich der seitlichen Biegung des Laufes, und die Kugel erhält einen Drall um die Hochachse. Nach Verlassen des Laufes wird die Kugel deutlich zur Seite abgelenkt.
Diese Erklärung für den Magnus-Effekt ist erfolgreich in dem Sinne, dass sie sich noch heute für den allgemeinen Fall des dynamischen Auftriebs in der Standardliteratur der Physik findet.[6][7] Als sehr spezielle Anwendung des Energiesatzes beschreibt die Bernoulli-Relation jedoch nicht Ursache und Wirkung, sondern ausschließlich einen funktionalen Zusammenhang zwischen Geschwindigkeits- und Druckfeld.
Lyman Briggs (1959)[8] erweiterte die Theorie von Magnus um den Einfluss der Grenzschicht. Ausschließlich hier entsteht durch Reibung an der Kugeloberfläche eine Zirkulationsströmung. Gleichzeitig löst sich die Luft auf der strömungsabgewandten Seite der Kugel aus der Grenzschicht heraus (Grenzschichtablösung). Dadurch entsteht außerhalb der Grenzschicht eine Strömung, die der Bernoulli-Relation genügt.
Rotiert die Kugel nicht, erfolgt die Grenzschichtablösung symmetrisch. Der Magnus-Effekt entsteht dadurch, dass bei rotierender Kugel die Grenzschichtablösung auf der Seite der Kugel später erfolgt, auf der die Strömung gleichgerichtet mit der Drehrichtung der Kugel ist. Hierdurch erhält die Strömung einen Impuls in Richtung der Seite der Kugel, die entgegen der Strömung dreht. Die Gegenkraft hierzu ist die seitliche Ablenkungskraft der Kugel. Dies verdeutlicht die Skizze rechts: Die Strömung trifft von rechts auf die Kugel und wird nach oben abgelenkt - also beschleunigt. Die Gegenkraft hierzu ist die nach unten gerichtete Kraft auf die Kugel.
Die folgenden Beispiele von abgelenkten Flugkörpern werden häufig mit dem Magnus-Effekt in Verbindung gebracht. In allen Fällen treten jedoch verschiedene Effekte gleichzeitig auf. Es ist nicht offensichtlich, in welchem Ausmaß der Magnus-Effekt eine Rolle spielt.
Im Berliner Magnus-Haus kann der Effekt interaktiv erprobt werden, und eine Tafel erläutert den Vorgang:
Magnus erbrachte 1852 den Nachweis des Phänomens rein experimentell und erkannte damit die Ursache für die Bahnabweichung rotierender Geschosse. Angeregt durch die Flugbahnabweichung von Tennisbällen gelang erst 1877 Lord Rayleigh die theoretische Begründung des Effekts.[9] Er schrieb die Entdeckung und Erklärung des Phänomens Magnus zu, obwohl diese bereits etwa 100 Jahre vorher von Robins[10] beschrieben wurde (Barkla und Auchterlonie, 1971).[11] Erst 1959 erweiterte Briggs die bis dahin gültige Erklärung des Phänomens allein über die Bernoulli-Relation, indem er die Grenzschichttheorie einbezog, die Anfang des 20. Jahrhunderts vornehmlich von Ludwig Prandtl entwickelt wurde.