Kutta-Schukowski-Transformation - LinkFang.de





Kutta-Schukowski-Transformation


Die Kutta-Schukowski-Transformation, oft auch nur Schukowski-Transformation oder nach anderer Transkription Joukowski-Transformation genannt, ist ein mathematisches Verfahren, das Anwendung in der Strömungslehre und Elektrostatik findet. Sie ist die einfachste Transformation, die auf einen Kreis angewendet als Ergebnis Tragflächenprofile liefert. Sie ist nach Martin Wilhelm Kutta und Nikolai Jegorowitsch Schukowski benannt.

Definition

Die Kutta-Schukowski-Transformation lässt sich mit komplexen Zahlen darstellen, es handelt sich um eine konforme Abbildung. Sie entspricht also einer Funktion [math]f: \mathbb{C}\setminus\{0\} \rightarrow \mathbb{C}[/math] mit der Gleichung

[math]f(z) = \frac{1}{2} \left(z+\frac{1}{z}\right)[/math]

Um Tragflächenkonturen mit gewölbter Mittellinie zu erzeugen, sind zudem noch geometrische Berechnungen nötig, da hier der Ausgangspunkt der Transformation nicht das Zentrum, sondern ein um x und y verschobener Punkt innerhalb des Kreises sein muss.

Anwendung

Zusammen mit dem Kreis transformiert man auch das Bild der Stromlinien um den Kreis, die Geschwindigkeits- und Druckverteilung, welche man wegen der Symmetrie leicht so wählen kann, dass sie der Strömungsgleichung genügen. Die historische und didaktische Bedeutung des Verfahrens beruht auf der Tatsache, dass auch das Ergebnis der Transformation der Strömungsgleichung genügt und man so den dynamischen Auftrieb unmittelbar errechnen kann. Dadurch wurde ein Vergleich zwischen theoretischer und experimenteller Tragflächenforschung möglich.

Geschichte

Kutta benutzte die Transformation für Tragflächenprofile, welche aus unendlich dünnen Kreisbogensegmenten bestanden. Schukowski zeigte, dass man mit dieser Methode auch Profile endlicher Dicke sowie gekrümmter Mittenkontur berechnen kann. Allerdings haben derartig berechnete Profile noch gravierende Nachteile, wie Strömungsablösung und erhöhte Wirbelbildung, weshalb später kompliziertere Transformationsgleichungen benützt wurden. Heute setzt man numerische Verfahren zur Simulation der Strömung ein, was zwei Vorteile hat: Einerseits kann man den Profilverlauf frei wählen, auch dreidimensional, andererseits ist man nicht auf vereinfachte Strömungsgleichungen und -felder angewiesen.

Weblinks


Kategorien: Funktionentheorie | Transformation | Strömungslehre

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Kutta-Schukowski-Transformation (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.