Kongruenzsatz - LinkFang.de





Kongruenzsatz


Als Kongruenzsatz bezeichnet man in der ebenen Geometrie Aussagen, anhand derer sich einfach die Kongruenz von Dreiecken nachweisen lässt. Dreiecke sind kongruent, wenn sie gleich in Form und Fläche sind. Die Dreieckskongruenz (also die Kongruenz von Dreiecken) bildet eine Äquivalenzrelation,[1] das heißt, kongruente Dreiecke können als gleich angesehen werden.

Kongruenzsätze

In den üblichen Bezeichnungen der vier Kongruenzsätze steht jeweils „S“ für die Übereinstimmung einer Seitenlänge und „W“ für die Übereinstimmung eines Winkels:

SSS-Satz (erster Kongruenzsatz)
Zwei Dreiecke, die in ihren drei Seitenlängen übereinstimmen, sind kongruent.
SWS-Satz (zweiter Kongruenzsatz)
Zwei Dreiecke, die in zwei Seitenlängen und in dem eingeschlossenen Winkel übereinstimmen, sind kongruent.
WSW-Satz (dritter Kongruenzsatz)
Zwei Dreiecke, die in einer Seitenlänge und in den dieser Seite anliegenden Winkeln übereinstimmen, sind kongruent. Dies schließt über den Satz von der Summe der Innenwinkel im Dreieck auch den folgenden Satz mit ein:
  • SWW-Satz: Zwei Dreiecke, die in einer Seitenlänge, einem dieser Seite anliegenden Winkel und dem dieser Seite gegenüberliegenden Winkel übereinstimmen, sind kongruent.
Bemerkung: Nicht zwingend kongruent sind jedoch zwei Dreiecke, die in zwei Winkeln und in einer Seitenlänge übereinstimmen, wenn nicht bekannt ist, welche der gegebenen Winkel an der gegebenen Seite anliegen. Aus Angaben zu einer Seite und zwei Winkeln können somit drei im Allgemeinen nicht kongruente Dreiecke konstruiert werden, je nachdem ob der erste, zweite oder beide Winkel der Seite anliegen.
SSW-Satz (vierter Kongruenzsatz)
Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent.
Hierbei wird die Einschränkung gegenüber einem nicht allgemein existierenden SSW-Satz durch eine entsprechende Schreibweise oder Kennzeichnung (etwa SsW, Ssw oder SSWg, siehe die Abbildung unten) zum Ausdruck gebracht.

Stimmen zwei Dreiecke in zwei oder allen drei Innenwinkeln überein, so sind sie nicht notwendigerweise kongruent. Sie sind jedoch ähnlich.

Die nachfolgende Abbildung zeigt für jeden der vier Kongruenzsätze die Größen, in denen zwei Dreiecke übereinstimmen müssen.

Von links nach rechts: SSS, WSW, SWS, SSW.

Beweise

Klassisch beweist man die Kongruenzsätze, indem man Konstruktionen mit Zirkel und Lineal angibt, die aus den entsprechenden gegebenen Größen eines Dreiecks ein zweites konstruieren. Geht dies nur auf genau eine Weise, so sind die beiden Dreiecke kongruent. Mit Bezeichnungen wie in obiger Abbildung geht dies wie folgt:

SSS
Gegeben [math]a[/math], [math]b[/math] und [math]c[/math]. Trage eine Strecke [math]BC[/math] der Länge [math]a[/math] ab; der Kreis um [math]C[/math] mit Radius [math]b[/math] und der um [math]B[/math] mit Radius [math]c[/math] schneiden sich in zwei Punkten [math]A_1[/math] und [math]A_2[/math], wodurch sich zwei spiegelsymmetrische (also kongruente) Dreiecke [math]A_1BC[/math] und [math]A_2BC[/math] ergeben. Legt man sich auf eine Orientierung fest, ist das Dreieck sogar eindeutig. Dies gilt entsprechend auch für die folgenden Konstruktionen:
WSW
Gegeben [math]a[/math], [math]\beta[/math] und [math]\gamma[/math]. Trage eine Strecke [math]BC[/math] der Länge [math]a[/math] ab; die Halbgerade (der Strahl), die bei [math]B[/math] mit [math]BC[/math] den Winkel [math]\beta[/math] einschließt, und die, die bei [math]C[/math] mit [math]BC[/math] den Winkel [math]-\gamma[/math] einschließt, schneiden sich in einem Punkt [math]A[/math].
SWS
Gegeben [math]a[/math], [math]b[/math] und [math]\gamma[/math]. Auf zwei Halbgeraden (Strahlen), die mit [math]C[/math] als Scheitel den Winkel [math]\gamma[/math] einschließen, trage die Länge [math]b[/math] bzw. [math]a[/math] ab, um [math]A[/math] und [math]B[/math] zu finden.
SSW
Gegeben [math]b[/math], [math]c[/math] und [math]\gamma[/math] (wobei [math]c \gt b[/math]). Konstruiere zwei Halbgeraden, die mit [math]C[/math] als Scheitel den Winkel [math]\gamma[/math] einschließen; trage auf einem Schenkel die kürzere Strecke [math]b[/math] ab, um [math]A[/math] zu finden; der Kreis um [math]A[/math] mit Radius [math]c[/math] schneidet den anderen Schenkel in einem Punkt [math]B[/math].

Das nebenstehende Bild zeigt, dass der Winkel beim SSW-Satz der längeren Seite gegenüberliegen muss. Andernfalls hätte man Dreiecke, die zwar in drei Teilen (SSW) übereinstimmen, aber nicht kongruent sind: Die beiden Dreiecke [math]A_1BC[/math] und [math]A_2BC[/math] stimmen in den Seitenlängen [math]a[/math] und [math]c[/math] sowie im Winkel [math]\gamma=\angle ACB[/math] überein. Die Seitenlängen [math]b_1[/math] und [math]b_2[/math] unterscheiden sich aber.

Bemerkungen

  • In Hilberts Axiomensystem der euklidischen Geometrie hat SWS den Rang eines Axioms, die anderen werden aus diesem und den übrigen Axiomen bewiesen. Das erkannte Hilbert als nötig, weil im überlieferten Aufbau Euklids Beweisideen verwendet wurden, die nicht aus seinen Axiomen und Postulaten rein logisch abzuleiten waren, sondern sich auf die anschaulich einleuchtende freie Beweglichkeit der Dreiecke beriefen.
  • Es ist unter Umständen auch möglich, ein Dreieck aus anderen drei Bestimmungsstücken zu konstruieren, unter denen beispielsweise Inkreisradius, Umkreisradius, Fläche oder Höhen auftreten. Die zugehörigen Kongruenzaussagen werden jedoch nicht zu den klassischen Kongruenzsätzen gezählt.
  • In der sphärischen Geometrie weicht die Sachlage teilweise ab. So sind dort zwei (sphärische) Dreiecke bereits kongruent und nicht nur ähnlich, wenn sie in den drei Innenwinkeln übereinstimmen. Die Angabe des dritten Winkels ist auch nicht mehr redundant (Sphärischer Exzess).

Kongruenzbeweise

Die vier Kongruenzsätze bilden die Grundlage eines Beweisverfahrens, das in der Elementargeometrie häufig verwendet wird: In einem Kongruenzbeweis begründet man die Gleichheit zweier Streckenlängen oder zweier Winkelgrößen dadurch, dass man zunächst die Kongruenz zweier geeigneter Dreiecke zeigt und anschließend die Gleichheit entsprechender Seitenlängen bzw. Winkel folgert.

Literatur

Einzelnachweise

  1. Hartmut Wellstein: Elementargeometrie. Vieweg + Teubner, Wiesbaden 2009, ISBN 978-3-8348-0856-1, S. 12.
cs:Věty o shodnosti trojúhelníku

he:חפיפת משולשים


Kategorien: Synthetische Geometrie | Dreiecksgeometrie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Kongruenzsatz (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.