Infiniter Regress - LinkFang.de





Infiniter Regress


Der Ausdruck infiniter Regress (auch unendlicher Regress oder Endlosrekursion; regressus in/ad infinitum) wird allgemein in der Philosophie, insb. in der Logik und Argumentationstheorie, sowie in der Mathematik und Informatik verwendet.

Infiniter Regress im Sinne der Logik (Argumentationstheorie)

Der infinite Regress ist ein Sonderfall des Regresses im logischen Sinn und bezeichnet das Rückschreiten ins Unendliche in einer unendlichen Reihe. Ein Argument, das auf einen infiniten Regress hinausläuft, gilt als nicht besonders überzeugend. So versuchte zum Beispiel Aristoteles gegnerische Positionen dadurch zu widerlegen, dass er ihnen einen unendlichen Regress nachwies.

Ein unendlicher Regress liegt vor, „wenn die Bedingung (Ursache) selbst wiederum ein Bedingtes (Wirkung) ist und dies sich unbegrenzt fortsetzt“.[1]

In der Philosophie ist der unendliche Regress der zweite der Fünf Tropen des Agrippa und somit eine der drei unerwünschten Alternativen im Münchhausen-Trilemma (jede Begründung muss wiederum begründet werden, ohne dass diese Folge jemals zu einem Ende kommt). Teilweise spielt die Annahme eines unmöglichen infiniten Regresses eine Rolle bei der Diskussion des Konzeptes eines unendlichen Progresses.

Laut Karl Popper habe Fris darauf hingewiesen, dass man Sätze immer nur auf Sätze zurück führen kann, wenn man stets nach einer logischen Begründung fragt und die Sätze nicht dogmatisch einführen will. Wenn man sowohl den Dogmatismus als auch den unendlichen Regress vermeiden will, bleibe alleine die Annahme übrig, dass man Sätze auch auf Wahrnehmungserlebnisse zurückführen kann (Psychologismus).[2] Die Wahrnehmungserlebnisse werden in einem Beobachtungssatz festgehalten.

Infiniter Regress in der Mathematik und Informatik

In der Mathematik und Informatik bezeichnet „infiniter Regress“ einen endlosen Selbstaufruf. Ein infiniter Regress entsteht beispielsweise durch eine Funktion, die auf sich selbst verweist (Rekursion), ohne dass eine gültige Abbruchbedingung den Prozess jemals beendet.

Beispielsweise ist die Fibonacci-Folge rekursiv, jedoch entsteht hier kein infiniter Regress. Diese ist definiert als:

[math]f(1)=0; f(2)=1[/math]
[math]f(n)=f(n-1)+f(n-2)[/math]

d. h. es werden die ersten zwei Folgenglieder zu Eins definiert, und das n-te als die Summe der zwei vorherigen Folgenglieder. Ein Beispiel für eine infinit regressive Folge wäre

[math]f(n)=f(n)[/math].

Möchte man hier das n-te Folgenglied berechnen, so tritt nach Funktionsvorschrift dieser Prozess in eine Endlosschleife. Die Funktion [math]f[/math] ruft sich dabei ständig selbst auf, ohne – wie bei der Fibonacci-Folge – das Resultat auf eine der Anfangsbedingungen zurückzuführen.

Zur Erkennung und Vermeidung von infinitem Regress, insbesondere von Computerprogrammen, bedient man sich der semantischen Verifikation von rekursiven Funktionen. Der Beweis, dass kein infiniter Regress vorliegt, wird dann zumeist mittels einer Schleifeninvariante geführt (siehe auch Invariante). Dieser Beweis ist allerdings nicht immer nach einem bestimmten Verfahren möglich (siehe Halteproblem).

Einzelnachweise

  1. Schülerduden, Philosophie, 2. Aufl. (2002)/Regress
  2. Karl Popper, Basisprobleme (Eingeschränkte Vorschau bei Springer)

Kategorien: Theoretische Informatik | Mathematische Logik | Logik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Infiniter Regress (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.