Hochfester Beton - LinkFang.de





Hochfester Beton


Als hochfester Beton werden in den Normen Betone ab einer Zylinderfestigkeit von echt größer 50 N/mm² bis einschließlich 100N/mm² (C 100/115) klassifiziert. Der erste im EC2 genormte hochfeste Beton ist ein C55/67, der eine charakteristische Zylinderdruckfestigkeit von mindestens 55N/mm² erreichen muss.

Wasserzementwert

Die hochfesten Betone zeichnen sich durch ein dichtes und homogenes Gefüge mit einem geringen Kapillarporenanteil aus. In der Betonrezeptur unterscheiden sie sich vom Normalbeton vor allem durch einen geringeren Wasserzementwert. Bei normalfesten Betonen beträgt die Wasserzugabe in der Regel das 0,5 bis 0,7-fache der Zementmasse. Diese Relation wird bei hochfesten Betonen auf Werte zwischen 0,35 und 0,25 reduziert. Somit enthält hochfester Beton weniger Wasser, als zur vollständigen Hydratation des Zementes notwendig ist (w/z ~ 0,40). Außerdem ist nur wenig ungebundenes Wasser im Zementstein vorhanden, das die Bildung von Kapillarporen hervorruft. Darüber hinaus ist unhydratisierter Zementklinker als hochfester "Zuschlag" vorhanden, der einen optimalen Verbund zum umgebenden hydratisierten Zementstein aufweist.

Fließmittel

Unter dem Aspekt einer baustellengerechten Verarbeitbarkeit sind niedrige Wasserzementwerte nur durch den Einsatz von leistungsfähigen Fließmitteln möglich. Die Wirkung der Fließmittel beruht auf einer Verteilung der Zementagglomerate und einer Art Schmierwirkung. Da die Zugabe von Mikrosilika den Frischbeton versteift und eine „klebrige“ Konsistenz erzeugt, ist der fließfähige Konsistenzbereich (KF) bzw. die Ausbreitmaßklasse F4 mit einem Ausbreitmaß von mehr als 49 cm anzustreben.

Silika

Die höheren Betonfestigkeiten werden neben dem niedrigen w/z-Wert vor allem durch die Beimengung feinster Zusatzstoffe erzielt. Üblicherweise wird deshalb bei der Herstellung von hochfesten Betonen Silikastaub zugegeben. Die Silikapartikel sind ca. 30 bis 100 mal kleiner als die Zementkörner und bestehen nahezu vollständig aus amorphem Siliciumdioxid, das bei der Herstellung von Siliziummetallen und Ferrosilicium entsteht und mittels Elektrofiltern aus den Rauchgasen gewonnen wird. Die festigkeitssteigernde Wirkung des Mikrostaubs ist durch drei Ursachen zu erklären:

  • Aufgrund ihrer Gestalt und Größe sind die Silikapartikel in der Lage, einen Teil des Porenraumes zwischen den Zementkörnern auszufüllen. Damit wird die wegen der dispergierenden Wirkung der Fließmittel bewirkte Gefügeverdichtung des Zementsteins noch einmal deutlich gesteigert und eine höhere Dichte erreicht (Mikrofüllereffekt).
  • Zusätzlich zur Zementhydratation läuft eine puzzolanische Sekundärreaktion zwischen dem bei der Zementhydratation entstehendem Calciumhydroxid [math] Ca(OH)_2 [/math] und dem Silikastaub [math] SiO_2 [/math] ab. Hierbei wird Calciumsilikathydrat [math] CSH [/math] gebildet, das gegenüber den Ausgangsstoffen eine höhere Festigkeit aufweist.
  • Eine wichtige Ursache ist außerdem die deutliche Verbesserung der Mikrostruktur in der Verbundzone zwischen Zementstein und Zuschlag. Der Grund ist eine Reduzierung des Calcium- und Ettringitgehaltes in der Kontaktzone. Dies lässt sich auch an den Bruchflächen von hochfesten Betonprüfkörpern erkennen. Die Flächen sind relativ glatt, der Bruch erfolgt nicht wie bei normalfestem Beton um die Zuschläge herum, sondern durch die Zuschläge hindurch.

Der verbesserte Verbund zwischen Zuschlag und Matrix trägt im Wesentlichen zur Festigkeitssteigerung bei, die puzzolanische Sekundärreaktion nur zu ca. 20 %.

Zemente mit großer Mahlfeinheit

In hochfesten Betonen finden auch Zemente Verwendung, die weitaus feiner als auf die üblichen 3200 bis 3500 Blaine des Portlandzementes Pz35 aufgemahlen sind und Werte um 5000 bis 5500 Blaine aufweisen können. Diese Feinstzemente sind aufgrund ihrer großen spezifischen Oberfläche äußerst aufwendig herzustellen; sie verbrauchen erheblich mehr Energie zu ihrer Aufmahlung und lassen sich nicht mit jeder beliebigen Art Zementmühlen herstellen. Sie stellen auch besondere Anforderungen an das Trennverfahren (Separation) und die hierfür verwendeten Maschinen (Sichter). Außerdem sind an die Lagerung erhöhte Anforderungen gestellt, um die hohe spezifische Oberfläche auch über die Lagerdauer erhalten zu können.

Geschichte

Bereits Anfang der fünfziger Jahre schaffte es Otto Graf, Betone mit einer Druckfestigkeit von 75 N/mm² herzustellen. Mit einem w/z-Wert von 0,32, Basaltzuschlägen sowie mit niedrigen Temperaturen und unter Druck erhärtet wurden Mitte der sechziger Jahre durch K. Walz im Labor Festigkeiten bis 140 N/mm² erreicht. Den Durchbruch für die Herstellung von hochfestem Ortbeton brachte aber erst die Entdeckung des Silika als Betonzusatzstoff und die Entwicklung von Hochleistungsverflüssigern in den siebziger Jahren. Die Erstanwendung in Deutschland erfolgte 1990 mit einem B 85 bei dem Hochhaus Trianon in Frankfurt. Weitere Erfahrungen liegen 2008 bezüglich der Anwendung von hochfestem Beton bei Brückenbauten und Bodenplatten nach Wasserhaushaltsgesetz vor.

Weblinks

Hochfester Beton / Hochleistungsbeton (PDF-Datei; 116 kB)


Kategorien: Betonart nach Eigenschaften

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Hochfester Beton (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.