Häufigkeitsverteilung - LinkFang.de





Häufigkeitsverteilung


Eine Häufigkeitsverteilung ist eine Methode zur statistischen Beschreibung von Daten (Messwerten, Merkmalswerten). Mathematisch gesehen ist eine Häufigkeitsverteilung eine Funktion, die zu jedem vorgekommenen Wert angibt, wie häufig dieser Wert vorgekommen ist. Man kann eine solche Verteilung als Tabelle, als Grafik oder modellhaft über eine Funktionsgleichung beschreiben.

Die Häufigkeitsverteilung ist in der Deskriptiven Statistik, was die Wahrscheinlichkeitsverteilung in der Wahrscheinlichkeitstheorie ist; letztere bietet eine Reihe mathematischer Funktionen, die zur Annäherung und Analyse von Häufigkeitsverteilungen herangezogen werden (wie etwa die Normalverteilung).

Verfahren

Die Datenmenge (Messwerte, Umfragedaten) bildet die zunächst ungeordnete Urliste. Als erstes wird sie geordnet oder sortiert. Aus der geordneten Urliste (Rangliste) lassen sich bereits Medianwert, Spannweite (statistische Streuung), Quantile und Interquartilsabstand entnehmen und die Standardabweichung abschätzen.

Dann fassen wir gleiche Werte zusammen und notieren zu jedem Wert, wie oft er vorkommt, also seine absolute Häufigkeit. Beziehen wir die absoluten Häufigkeiten auf die Gesamtzahl der Werte, die sog. Stichprobe (Probenumfang), so erhalten wir die relativen Häufigkeiten. Wir haben nun eine geordnete Menge von Wertepaaren (Merkmalswert und zugehörige relative Häufigkeit), eine sogenannte Rangfolge.

Addieren wir - beim kleinsten Merkmalswert beginnend - die relativen Häufigkeiten auf und ordnen jedem Merkmalswert die bis dahin erreichte Summe (einschließlich seines eigenen Beitrags) zu, so erhalten wir die Verteilungssumme oder kumulierte Häufigkeit, die für jeden Merkmalswert angibt, wie groß der Anteil der Werte kleiner oder gleich dem zugehörigen Merkmalswert ist. Der Anteil beginnt mit 0 und geht bis 1 oder 100 Prozent. Stellt man die Tabelle grafisch dar, ergibt sich eine schwach monoton steigende Kurve, meist in gestreckter S-Form. Es gibt zahlreiche Versuche, reale Verteilungssummen durch Funktionsgleichungen näherungsweise wiederzugeben. Die Verteilungssummen in Abhängigkeit von den Merkmalswerten sind die einfachste Art der Darstellung einer Häufigkeitsverteilung.

Die weitere Rechnung erfordert eine Einteilung der Merkmalswerte in Klassen. Dazu teilt man den vorkommenden Wertebereich in zum Beispiel 10 oder 20 meist gleich breite Klassen (die seltenen Werte an den Rändern (siehe "Ausreißer") werden bisweilen in größeren Klassen zusammengefasst). Man gelangt dann zu den Dichtefunktionen, die im Fall einer stetigen Verteilung die Ableitung der Verteilungssummenfunktion nach dem Merkmalswert sind. Ferner lässt sich die Häufigkeit nicht nur durch Zählen ermitteln, sondern beispielsweise auch durch Wiegen. Wir erhalten dann eine Massenverteilung anstelle einer Anzahlverteilung. Im Prinzip eignet sich jede additive Größe zum Messen der Häufigkeit.

Wenn eine Zufalls-Stichprobe stark von der Normalverteilung (Glockenkurve) abweicht, können die Daten durch unerkannte Einflüsse, Auswahleffekte oder einen Trend verfälscht sein. Verschiedene Auswege bieten statistische Tests oder eine Varianzanalyse. Besteht der Probenumfang in einer Überlagerung mehrerer Teilmengen (Altersverteilung, Berufe, Gruppen), so kann die Häufigkeitsverteilung statt eines Maximums auch zwei- oder mehrgipfelig sein.

Siehe auch

Literatur

Weblinks

 Wiktionary: Häufigkeitsverteilung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Häufigkeitsverteilung (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.