Gosper-Kurve - LinkFang.de





Gosper-Kurve


Die Gosper-Kurve ist eine fraktale und raumfüllende Kurve. Sie ist benannt nach Bill Gosper. Ähnlich wie die Drachenkurve und die Hilbert-Kurve wird sie durch Ersetzung erzeugt.

Algorithmen

Lindenmayer-System

Die Gosper-Kurve lässt sich durch ein Lindenmayer-System mit folgenden Eigenschaften beschreiben:

  • Winkel: 60°
  • Startstring: [math]A[/math]
  • Ableitungsregeln:
    • [math]A \mapsto A-B--B+A++AA+B-[/math]
    • [math]B \mapsto +A-BB--B-A++A+B[/math]

Ein Programm zur Erzeugung der Gosper-Kurve in Logo:

to rg :st :ln
make "st :st - 1
make "ln :ln / 2.6457
if :st > 0 [rg :st :ln rt 60 gl :st :ln  rt 120 gl :st :ln lt 60 rg :st :ln lt 120 rg :st :ln rg :st :ln lt 60 gl :st :ln rt 60]
if :st = 0 [fd :ln rt 60 fd :ln rt 120 fd :ln lt 60 fd :ln lt 120 fd :ln fd :ln lt 60 fd :ln rt 60]
end

to gl :st :ln
make "st :st - 1
make "ln :ln / 2.6457
if :st > 0 [lt 60 rg :st :ln rt 60 gl :st :ln gl :st :ln rt 120 gl :st :ln rt 60 rg :st :ln lt 120 rg :st :ln lt 60 gl :st :ln]
if :st = 0 [lt 60 fd :ln rt 60 fd :ln fd :ln rt 120 fd :ln rt 60 fd :ln lt 120 fd :ln lt 60 fd :ln]
end

Das Programm kann beispielsweise mit rg 4 300 aufgerufen werden. Alternativ auch mit gl 4 300.

Gosper Island

Die von der Gosper-Kurve umschlossene Fläche (Gosper Island) ist eine Variante der Kochschen Schneeflocke. Die Fläche eignet sich zur Parkettierung der Ebene.

Weblinks


Kategorien: Fraktale Geometrie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Gosper-Kurve (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.