Gaschromatographie mit Massenspektrometrie-Kopplung - LinkFang.de





Gaschromatographie mit Massenspektrometrie-Kopplung


Gaschromatographie mit Massenspektrometrie-Kopplung ist die Kopplung eines Gas-Chromatographen (GC) mit einem Massenspektrometer (MS) (Gesamtverfahren bzw. Gerätekoppelung verkürzend auch: GC-MS oder GC/MS oder GCMS). Dabei dient der Gaschromatograph zur Auftrennung des zu untersuchenden Stoffgemisches und das Massenspektrometer zur Identifizierung und gegebenenfalls auch Quantifizierung der einzelnen Komponenten. Die Trennsäule eines Gaschromatographen besteht aus einem dünnen (Durchmesser ca. 3–6 mm) Edelstahl- bzw. Glasrohr oder bei den meisten moderneren Systemen aus einer 15 bis zu > 100 m langen Fused-silica- bzw. Glaskapillare. Die erstgenannten Trennsäulen werden als sogenannte gepackte Trennsäulen betrieben und finden auch heute noch häufig Verwendung in der sogenannten Prozess-Gaschromatographie. Die Kapillar-Trennsäulen werden dagegen in der analytischen Untersuchung von hochkomplexen Substanzmischungen eingesetzt (s. u.). Einzelheiten zu den Säulentypen und den verwendeten stationären Phasen (Trennflüssigkeiten) finden sich im Beitrag Gaschromatographie. Die Säulen werden im temperierbaren sogenannten Ofenraum von inerten Trägergasen wie z. B. Stickstoff oder Helium als mobiler Phase durchströmt. In diesen Gasstrom wird über den beheizbaren Injektor oder Einspritzblock das verdampfte Stoffgemisch injiziert. Jede Komponente des Stoffgemisches hat durch ihre physikalisch-chemischen Eigenschaften eine charakteristische Mobilität in der Trennsäule, die u. a. vom Verteilungskoeffizienten zwischen stationärer und mobiler Phase bestimmt wird. So können auch sehr komplexe Stoffgemische in ihre Komponenten aufgetrennt werden. Werden einzelne Stoffe nicht getrennt, spricht man von kritischen Paaren.

Aufgrund der physikalisch-chemischen Eigenheiten der Gaschromatographie können nur verdampfbare Substanzen mit entsprechend relativ geringer Molekülmasse (m ca. < 1000 u) untersucht werden.

Nach Durchlaufen der Chromatographiesäule werden die getrennten Stoffe ionisiert. Zur Ionisierung der Substanzen in der Ionenquelle wird meist die EI (electron impactElektronenstoßionisation), aber auch die CI (chemische Ionisation) oder FI (Feldionisation) sowie noch etliche andere Ionisierungstechniken genutzt – die Verfahren sind im Artikel Massenspektrometrie näher erklärt. Durch die Ionisierung werden die Moleküle der Einzelsubstanz entweder zertrümmert (EI) oder protoniert (CI). Aus den Massenzahlen des Molpeaks (CI), charakteristischer Bruchstücke (EI) und eventuell vorhandenen Isotopenmustern, kann auf die Struktur- und Summenformel der Substanz geschlossen werden.

Da heute in der Regel Kapillar-GC-Säulen mit geringem Trägergasfluss verwendet werden, die das erforderliche Vakuum im Massenspektrometer nicht stören, werden die Geräte meist über eine beheizte „Transfer-Line“ direkt gekoppelt. Früher übliche weitere Kopplungsverfahren wie „Open-Split“ oder „Moving belt“ sind nicht mehr gebräuchlich.

Zur Aufnahme der Massenspektren kommen typischerweise bei einfachen Geräten Ionenfallen- oder Quadrupol-Analysatoren zum Einsatz. Aufwendigere Geräte verfügen über TOF- (Time-of-Flight) oder hochauflösende Sektorfeld-Analysatoren.

Da Gaschromatographen die Substanzen mit hoher zeitlicher Auflösung trennen können (geringe Halbwertsbreite der Peaks, unterer Sekundenbereich – z. B. < 3 s – ist Stand der Technik), ist es gelegentlich ein Problem für das angeschlossene Massenspektrometer, die Spektren in der erforderlichen Geschwindigkeit aufzunehmen. Um das mögliche Optimum an gewünschter Information zu erhalten, müssen bei noch im Einsatz befindlichen älteren Geräten Kompromisse bei der Spektrenqualität hinsichtlich des zu untersuchenden Massenbereichs und/oder der Nachweisempflindlichkeit gemacht werden. Moderne Geräte des Jahres 2005 schaffen jedoch über eine Massendekade − das heißt z. B. 10…100 u, oder 50…500 u – fünf und mehr komplette Massenspektren pro Sekunde. Noch schneller kann gescannt werden, wenn man sich zwecks quantitativer Analyse nur für ausgewählte Ionen interessiert und auch nur diese misst (single oder selected ion monitoring mode: SIM); Nachweisgrenzen (drei mal Untergrundrauschen) von 10−14 Mol (entspricht etwa 10 Milliarden Molekülen oder Massen im Bereich von Billionstel Gramm) und besser sind so pro Analysenlauf möglich.

Substanzgemische, die sich mit GC-MS nicht erfolgreich analysieren lassen, können häufig mit LC-MS (Liquid Chromatography) genauer untersucht werden. LC hat den Vorteil, dass temperaturempfindliche und/oder hochmolekulare Substanzen nicht verdampft werden müssen, jedoch auch den Nachteil, dass die oben erwähnte Halbwertsbreite der Peaks deutlich größer ist, mithin die zeitliche Auflösung und damit die chromatographische Abtrennung von ähnlichen Substanzen mit vergleichbarer Retentionszeit schlechter ist (doch auch hier haben neuere Entwicklungen ab ca. 2003 zu qualitativen Sprüngen geführt).

Anwendungsgebiete von GC-MS

Exemplarische Nennungen, zu Einzelheiten der qualitativen und quantitativen Analytik bzw. Spurenanalytik siehe auch die jeweiligen Fachgebiete:

Literatur

  • Hans-Joachim Hübschmann: Handbook of GC/MS, Fundamentals and Applications. 3. Auflage. Wiley-VCH, Weinheim 2015, ISBN 978-3-527-33474-2.
  • Helmut Günzler, Alex Williams (Hrsg.): Handbook of Analytical Techniques. 2. Nachdruck. Band 1, Wiley-VCH, Weinheim u. a. 2002, ISBN 3-527-30165-8, chapter 10, 11, 20.

Kategorien: Chromatographie | Lipidomik

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Gaschromatographie mit Massenspektrometrie-Kopplung (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.