Fourier-Zahl - LinkFang.de





Fourier-Zahl


Physikalische Kennzahl
Name Fourier-Zahl
Formelzeichen [math]\mathit{Fo}[/math]
Dimension dimensionslos
Definition [math]\mathit{Fo}=\frac{\alpha\;t}{L^2}[/math]
[math]\alpha[/math] Transportkoeffizient
[math]t [/math] charakteristische Zeit
[math]L[/math] charakteristische Länge
Benannt nach Jean Baptiste Joseph Fourier
Anwendungsbereich instationäre Wärmeleitung,
Stoffaustauschprozesse

Die Fourier-Zahl [math]\mathit{Fo}[/math] (nach Jean Baptiste Joseph Fourier) ist eine dimensionslose Kennzahl zur Beschreibung von Problemen der instationären Wärmeleitung oder allgemeinen Stoffaustauschprozessen. Sie lässt sich als Verhältnis aus Transportrate zur Speicherungsrate interpretieren. Bei instationärer Wärmeleitung ist sie das Verhältnis der Rate, mit der fühlbare Wärme transportiert wird, zu der Rate mit der sie aufgenommen wird.[1]

Definition

Thermische Fourier-Zahl

Die Fourier-Zahl für Wärmeleitung ergibt sich bei der Entdimensionalisierung der Wärmeleitungsgleichung. Als Transportkoeffizient ist die Temperaturleitfähigkeit [math]a[/math] zu verwenden:

[math] \mathit{Fo} = a \cdot \frac{t}{L^2} = \frac{\lambda}{c_\mathrm p \cdot \rho} \cdot \frac{t}{L^2}[/math]

wobei

Sie beschreibt die Dauer eines thermischen Prozesses im Verhältnis zur Dauer des Wärmetransportes und findet daher als dimensionsloser Zeitparameter Verwendung.

Massen Fourier-Zahl

Bei Stoffaustauschprozessen in der mechanischen Verfahrenstechnik wie z. B. beim Mischen wird die Fourier-Zahl zusammen mit der Bodenstein-Zahl verwendet. Als Transportkoeffizient wird statt der Temperaturleitfähigkeit (auch "Wärmediffusionskoeffizient"), der (Massen-)Diffusionskoeffizient [math]D[/math] oder der Dissipationskoeffizient [math]M[/math] verwendet.[2]

Anwendungen

  • Verschieden große, aber geometrisch ähnliche Probleme der instationären Wärmeleitung zeigen eine identische Entwicklung des Temperaturfeldes, wenn als Zeitkoordinate die Fourier-Zahl verwendet wird.
  • Bei einer periodischen, eindimensionalen thermischen Welle hat die Fourier-Zahl den Wert π, wenn für [math]t[/math] der Kehrwert der Anregungsfrequenz und für [math]L[/math] die Eindringtiefe in das homogene Material eingesetzt werden.
  • Bei der exponentiellen Abkühlung eines Körpers mit Isolierschicht bestimmt die Fourier-Zahl zusammen mit der Biot-Zahl die Größe von Temperaturdifferenzen innerhalb des Körpers zur Temperaturdifferenz nach außen.
  • Kommt die instationäre Wärmeleitung durch eine stationäre Rohrströmung zustande (instationär im mit der Strömung mitbewegten Bezugssystem), so ist der Kehrwert der Fourier-Zahl, Graetz-Zahl genannt, das Verhältnis von konvektivem Wärmetransport zu Wärmeleitung im ortsfesten Bezugssystem.

Einzelnachweise

  1. Josef Kunes: Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012, ISBN 0-12-391458-2, S. 175 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Matthias Bohnet (Hrsg.): Mechanische Verfahrenstechnik. Wiley-VCH, Weinheim 2004, ISBN 3-527-31099-1, S. 213–229.

Kategorien: Kennzahl (Strömungsmechanik) | Kennzahl (Thermodynamik)

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Fourier-Zahl (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.