Ewige Rente - LinkFang.de





Ewige Rente


Eine ewige Rente (auch Perpetuität) ist eine Rente, die aus dem Zinsertrag einer festverzinslichen Geldanlage gezahlt werden kann, ohne dass sich die Höhe des angelegten Kapitals ändert. Als Beispiel sei der Nobelpreis genannt, der jährlich an herausragende Wissenschaftler ausgezahlt wird. Dieser Preis ist mit rund 1 Mio. Euro (je nach Zinsertrag) pro Fachrichtung dotiert.

Da das Kapital erhalten bleibt, wird der Ertrag (r) daher „ewig“ erzielt.

Berechnung

[math]r = K \cdot p[/math]

r ist der wiederholt (nachschüssig) zu zahlende Rentenbetrag, K das Anfangskapital und p der Kalkulationszinssatz.

Herleitung

Die Formel des nachschüssigen Rentenbarwerts kommt aus der Rentenrechnung.

Anwendungsbeispiel

Die Methode der „ewigen Rente“ eignet sich zur Entscheidungsfindung „Vermieten oder Verkaufen“. Wenn beispielsweise aus Sicht des Verkäufers der Verkaufspreis K einer Immobilie inklusive Verkaufsnebenkosten geringer ist als der Quotient aus dem erwarteten jährlichen Nettomietertrag (Kaltmiete minus Instandhaltungsaufwand, Steuern etc.) und dem Kalkulationszinssatz, ist Vermietung vorteilhaft.

Ewige steigende und fallende Renten

Natürlich gibt es auch bei der ewigen Rente das Konzept der steigenden bzw. fallenden Rente. Zugrunde liegt hier die Überlegung der Wertsicherung der periodischen Zinszahlungen (Inflation). Somit kann aus einer ewigen steigenden Rente jährlich ein um den Steigungsfaktor erhöhter Betrag entnommen werden, ohne das Kapital anzutasten und jährliche Steigerungen zu verhindern. In diesem Fall lautet die Formel

[math] r = K \cdot (p-g) [/math]

r bezeichnet wiederum die periodisch nachschüssige Rentenzahlung, K das Anfangskapital, p den Zinssatz und g die periodische Wachstumsrate (growth rate).

Zu beachten ist hierbei dass die growth rate auch ein negatives Vorzeichen haben kann. Die „Steigung“ wird dann negativ und es handelt sich in diesem Fall um eine fallende Rente.

Anwendungsbeispiel für eine ewige, steigende Rente

Ein typisches Anwendungsbeispiel findet sich in der Endlagerung von radioaktivem Abfall. Hier laufen jährlich Kosten an, die bis in alle Ewigkeit bezahlt werden müssen. Jedoch muss die Inflationsrate berücksichtigt werden. Also definiert man eine möglichst realistische Wachstumsrate (z. B. 3 %) und kann nun den notwendigen Kapitalstock berechnen, den man benötigt, um alle in der Zukunft liegenden Zahlungen, die sich jährlich um die Inflationsrate – in der Formel durch g repräsentiert – erhöhen, abdecken zu können.

Siehe auch


Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Ewige Rente (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.