Entscheidungsfunktion - LinkFang.de





Entscheidungsfunktion


Eine Entscheidungsfunktion ist ein Begriff aus der mathematischen Statistik, dem Teilbereich der Statistik, der sich der Methoden der Wahrscheinlichkeitstheorie bedient. Man unterscheidet zwischen nichtrandomisierten Entscheidungsfunktionen, bei denen jeder Beobachtung eine eindeutige Entscheidung zugeordnet wird, und randomisierten Entscheidungsfunktionen, bei denen die Wahl der Entscheidung noch vom Zufall abhängig ist. Entscheidungsfunktionen werden im Rahmen von statistischen Entscheidungsproblemen verwendet. Diese umfassen sowohl Testprobleme als auch Schätzprobleme und die Bestimmung von Konfidenzintervallen mittels Bereichsschätzern.

Eng verbunden mit der Entscheidungsfunktion ist die Verlustfunktion, die nach Treffen einer Entscheidung den Verlust bezüglich der getroffenen Entscheidung angibt, wenn der reale, aber unbekannte Wert von dieser Entscheidung abweicht. Entscheidungsfunktion und Verlustfunktion werden dann zur Risikofunktion kombiniert, die den potentiellen Verlust bei Verwendung einer gegebenen Entscheidungsfunktion angibt.

Definition

Gegeben sei ein statistisches Modell [math] (X, \mathcal A, \mathcal P) [/math] und ein Entscheidungsraum [math] (\Omega, \Sigma ) [/math].

Nichtrandomisierte Entscheidungsfunktion

Dann wird im Rahmen der mathematischen Statistik eine Funktion [math] d: X \to \Omega [/math], die [math] \mathcal A[/math]-[math] \Sigma [/math]-messbar ist, eine nichtrandomisierte Entscheidungsfunktion genannt. Die Menge aller nichtrandomisierten Entscheidungsfunktionen wird mit [math] D [/math] bezeichnet.

Randomisierte Entscheidungsfunktion

Eine randomisierte Entscheidungsfunktion ist dann ein Markow-Kern [math] \delta(x, S) [/math] von [math] (X, \mathcal A)[/math] nach [math] (\Omega, \Sigma) [/math], das heißt für [math] \delta \colon X \times \Sigma \to [0,1] [/math] gilt:

  • Für jedes [math] x \in X [/math] ist [math] \delta(x, \;\cdot\;) [/math] ein Wahrscheinlichkeitsmaß auf [math] (\Omega, \Sigma) [/math].
  • Für jedes [math] S \in \Sigma [/math] ist [math] \delta(\;\cdot\;, S) [/math] eine [math] \mathcal A [/math]-messbare Funktion.

[math] \delta(x,S) [/math] ist dann die Wahrscheinlichkeit, bei der Beobachtung von [math] x [/math] eine Entscheidung aus der Menge [math] S [/math] zu treffen. Die Menge aller randomisierten Entscheidungsfunktionen wird mit [math] \mathcal D [/math] bezeichnet.

Darstellung von nichtrandomisierten Entscheidungsfunktionen

Jede nichtrandomisierte Entscheidungsfunktion [math] d [/math] lässt sich auf natürliche Weise als randomisierte Entscheidungsfunktion darstellen. Dazu definiert man den Markow-Kern als

[math] \delta_d(x,A)= \begin{cases} 1 & \text{ falls } d(x) \in A \\ 0 & \text{ falls } d(x) \notin A \end{cases} [/math].

Bezeichnet man mit [math] \Delta_x [/math] das Diracmaß, so lässt sich der Markow-Kern noch kompakter schreiben als

[math] \delta_d(x,A):=\Delta_{\{d(x)\}}(A) [/math].

Damit lässt sich [math] D [/math] surjektiv in [math] \mathcal D [/math] einbetten. Jede nichtrandomisierte Entscheidungsfunktion ist somit nur ein Spezialfall einer randomisierten Entscheidungsfunktion.

Beispiel

Zu jeder der drei Klassen von statistischen Entscheidungsproblemen lassen entsprechende Entscheidungsfunktionen angeben. So sind klassische Entscheidungsfunktionen die Punktschätzer beispielsweise zur Bestimmung eines unbekannten Parameters, die Intervallschätzer zur Bestimmung eines Konfidenzintervalls und die statistischen Tests.

Punktschätzer

Betrachtet man beispielsweise das Produktmodell [math] (\{0,1\}^{100}, \mathcal P (\{ 0,1\})^{100}, (\operatorname{Ber_\vartheta}^{\otimes n})_{\vartheta \in [0,1]}) [/math], welches einen 100-maligen Münzwurf modelliert, und wählt als Grundmenge für den Entscheidungsraum den Parameterraum [math] \Theta=[0,1] [/math] und als σ-Algebra die entsprechende Borelsche σ-Algebra [math] \mathcal B ([0,1]) [/math], so ist das Stichprobenmittel

[math] M: \{0,1\}^{100} \to [0,1], \quad M(\omega)=\frac{1}{100}\sum_{i=1}^{100} \omega_i [/math]

eine Entscheidungsfunktion, die jedem Ausgang des Experiments, der aus einer 100-stelligen Folge von Nullen und Einsen besteht, die Entscheidung für einen geschätzten Parameter [math] \vartheta [/math] der Bernoulli-Verteilung zuordnet. Es handelt sich hierbei um eine nichtrandomisierte Entscheidungsfunktion.

Reduktion auf stark suffiziente σ-Algebren

Jede Entscheidungsfuktion lässt sich im folgenden Sinne reduzieren: ist [math] \mathcal S \subset \mathcal A [/math] eine stark suffiziente σ-Algebra (was für borelsche Räume [math] (X, \mathcal A) [/math] mit einer suffizienten σ-Algebra im herkömmlichen Sinne übereinstimmt), so kann die Entscheidungsfunktion [math] \delta(x, S) [/math] von [math] (X, \mathcal A)[/math] nach [math] (\Omega, \Sigma) [/math] durch eine Entscheidungsfunktion [math] \delta^*(x, \tilde S) [/math] von [math] (X, \mathcal S)[/math] nach [math] (\Omega, \Sigma) [/math] ersetzt werden, so dass für die Risikofunktion

[math] R(\vartheta, \delta)=R(\vartheta, \delta^*) \text{ für alle } \vartheta \in \Theta [/math]

gilt. Die stark suffiziente σ-Algebra enthält also bereits alle für die Risikoabschätzung nötigen Informationen.

Optimale Entscheidungsfunktionen

Es existieren unterschiedliche Optimalitätskriterien für Entscheidungsfunktionen, die teils auf der Ordnungstheorie, teils auch auf der Spieltheorie aufbauen.

Zulässige Entscheidungsfunktionen

Mittels der Risikofunktion [math] R_\delta(\vartheta) [/math] lässt sich eine Ordnungsrelation zwischen den Entscheidungsfunktionen definieren durch

[math] \delta_1 \preceq \delta_2 \text{ genau dann, wenn } R_{\delta_1}(\vartheta) \leq R_{\delta_1}(\vartheta) \text{ für alle } \vartheta \in \Theta [/math].

Gilt [math] \delta_1 \preceq \delta_2 [/math] und [math] \delta_1 \succeq \delta_2 [/math], so nennt man [math] \delta_1 [/math] und [math] \delta_2 [/math] äquivalent und schreibt [math] \delta_1 \sim \delta_2 [/math].

Ist nun [math] \tilde D \subset \mathcal D [/math] eine Teilmenge der Entscheidungsfunktionen, so heißt eine Entscheidungsfunktion [math] \delta_0 [/math] zulässig bezüglich [math] \tilde D [/math], wenn für jede weitere Entscheidungsfunktion [math] \delta_1 [/math] mit [math] \delta_1 \preceq \delta_0 [/math] gilt, dass [math] \delta_1 \sim \delta_0 [/math] ist.

Die zulässigen Entscheidungsfunktionen sind somit die minimalen Elemente der Menge [math] \tilde D [/math] bezüglich der Ordnungsrelation [math] \preceq [/math].

Minimax-Entscheidungsfunktionen

Eine Entscheidungsfunktion [math] \delta_0 [/math] heißt eine Minimax-Entscheidungsfunktion bezüglich der Menge [math] \tilde D \subset \mathcal D [/math], wenn

[math] \sup_{\vartheta \in \Theta}R(\vartheta, \delta_0)=\inf_{\delta \in \tilde D}\sup_{\vartheta \in \Theta}R(\vartheta, \delta) [/math]

gilt. Die Minimax-Entscheidungsfunktionen entsprechen einer Minimax-Strategie für einen Spieler mit Strategiemenge [math] \tilde D [/math] gegen einen Spieler mit Strategiemenge [math] \Theta [/math] in einem Zwei-Personen-Nullsummenspiel mit der Risikofunktion als Auszahlungsfunktion.

Bayes-Entscheidungsfunktionen

Ist [math] r(\mu, \delta) [/math] das Bayes-Risiko der Entscheidungsfunktion [math] \delta [/math] bezüglich der a-priori-Verteilung [math] \mu [/math], so heißt eine Eintscheidungsfunktion [math] \delta_0 [/math] eine Bayes-Entscheidungsfunktion bezüglich der a-priori-Verteilung [math] \mu [/math], wenn

[math] r(\mu, \delta_0)\leq r(\mu, \delta) [/math]

für alle [math] \delta \in \tilde D [/math] gilt.

Beziehungen zwischen den Optimalitätskriterien

Folgerungen aus zulässigen Entscheidungsfunktionen
  • Ist die Entscheidungsfunktion zulässig und eine equalizer rule, so ist sie eine Minimax-Entscheidungsfunktion.
Folgerungen aus Minimax-Entscheidungsfunktionen
  • Ist [math] \delta_0 [/math] Minimax-Entscheidungsfunktion und ist [math] \mu_0 [/math] eine ungünstigste a-priori-Verteilung, so ist [math] \delta_0 [/math] eine Bayes-Entscheidungsfunktion bezüglich [math] \mu_0 [/math] und [math](\delta_0, \mu_0) [/math] ist ein Sattelpunkt des Bayes-Risikos.
  • Ist die Minimax-Entscheidungsfunktion eindeutig, so ist sie auch zulässig.
Folgerungen aus Bayes-Entscheidungsfunktionen
  • Ist die Bayes-Entscheidungsfunktion [math] \delta_0 [/math] bezüglich [math] \mu_0 [/math] eindeutig, so ist sie zulässig.
  • Ist die Bayes-Entscheidungsfunktion eine equalizer rule, so ist sie auch eine Minimax-Entscheidungsfunktion.

Literatur


Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Entscheidungsfunktion (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.