Dedekindscher Schnitt - LinkFang.de





Dedekindscher Schnitt


Ein Dedekindscher Schnitt ist in der mathematischen Ordnungstheorie eine spezielle Partition der rationalen Zahlen, mit deren Hilfe sich eine reelle Zahl darstellen lässt. Auf diese Weise kann man die reellen Zahlen aus den rationalen Zahlen konstruieren. Benannt ist diese „Methode der Dedekindschen Schnitte“ nach dem deutschen Mathematiker Richard Dedekind. Sie kann allgemein zur Vervollständigung von Ordnungen verwendet werden, die wie die rationalen Zahlen in sich dicht liegen. Auch bei dieser Verallgemeinerung der Methode sind die Bezeichnungen üblich, die in diesem Artikel definiert und benutzt werden.

Definiert man die reellen Zahlen axiomatisch, so kann man Dedekindsche Schnitte verwenden, um die Ordnungsvollständigkeit der reellen Zahlen zu sichern. In diesem Fall spricht man dann von dem Axiom vom Dedekindschen Schnitt oder kurz vom Schnittaxiom.

Definition

Dedekindsche Schnitte werden durch ein geordnetes Paar von Teilmengen rationaler Zahlen [math]\alpha[/math] (Untermenge) und [math]\beta[/math] (Obermenge) über folgende Axiome definiert:

  1. Jede rationale Zahl liegt in genau einer der Mengen [math]\alpha[/math], [math]\beta[/math].
  2. Weder [math]\alpha[/math] noch [math]\beta[/math] ist leer.
  3. Jedes Element von [math]\alpha[/math] ist kleiner als jedes Element von [math]\beta[/math].
  4. [math]\alpha[/math] hat kein größtes Element, das heißt für jedes [math]p\in \alpha[/math] gibt es ein [math]r\in \alpha[/math] mit [math]p \lt r[/math]

Da jeweils die Untermenge [math]\alpha[/math] oder die Obermenge [math]\beta[/math] für sich einen Schnitt festlegen, kann man auch die folgende Definition benutzen:

Eine Teilmenge [math]\alpha[/math] der rationalen Zahlen ist genau dann Untermenge eines Dedekindschen Schnitts, wenn die folgenden Bedingungen erfüllt sind:

  1. [math]\alpha[/math] ist nicht leer und umfasst nicht alle rationalen Zahlen ([math]\alpha \neq \mathbb Q[/math]).
  2. [math]\alpha[/math] ist nach unten abgeschlossen, das heißt wenn [math]p\in \alpha[/math], [math]q \in \mathbb Q[/math] und [math]p \gt q[/math], dann ist auch [math]q \in \alpha[/math].
  3. [math]\alpha[/math] enthält kein größtes Element.

Diese drei Bedingungen lassen sich zusammenfassend so formulieren: [math]\alpha[/math] ist ein offenes, nach unten unbeschränktes und nach oben beschränktes Intervall von rationalen Zahlen. Statt „Untermenge eines Dedekindschen Schnitts“ wird in der Literatur auch die Bezeichnung „offener Anfang“ verwendet.[1] Manchmal wird die Untermenge eines Dedekindschen Schnitts auch selbst als „Schnitt“ bezeichnet.[2][3]

Konstruktion der reellen Zahlen

Man definiert die Menge [math]\mathbb R[/math] der reellen Zahlen als die Menge aller (Dedekindschen) Schnitte in [math]\Q[/math]. Der Einfachheit halber werden im Folgenden wie oben beschrieben nur die Untermengen von Dedekindschen Schnitten betrachtet und als „Schnitte“ bezeichnet. In die Menge aller Schnitte bettet man die rationalen Zahlen ein, indem man jeder Zahl als Schnitt die Menge aller kleineren Zahlen zuordnet. Der rationalen Zahl [math]x \in \mathbb Q[/math] ordnet man also den Schnitt

[math]x^* := \{s \in \mathbb Q \mid s \lt x \}[/math]

zu. Aber auch die irrationalen Zahlen lassen sich durch Schnitte darstellen. Die Zahl [math]\sqrt 2[/math] entspricht zum Beispiel dem Schnitt

[math]\{s \in \Q \mid s \lt 0 \text{ oder } s^2 \lt 2 \} \,.[/math]

Damit man die Schnitte sinnvoll „Zahlen“ nennen kann, muss man die Rechenoperationen und die Ordnung der neuen Zahlen so festsetzen, dass sie die Rechenoperationen auf den rationalen Zahlen und deren Ordnung fortsetzen.

Seien dazu [math]\alpha[/math] und [math]\beta[/math] zwei beliebige Schnitte.

Ordnung

Man setzt [math]\alpha \lt \beta[/math] genau dann, wenn [math]\alpha[/math] echte Teilmenge von [math]\beta[/math] ist.

Dies definiert eine strenge Totalordnung auf [math]\mathbb R[/math]. Diese ist sogar (nach Konstruktion) ordnungsvollständig, das heißt jede beschränkte Teilmenge besitzt ein Supremum. Ist nämlich [math]A[/math] eine Menge von Schnitten und [math]\beta[/math] eine obere Schranke, so ist also jeder Schnitt [math]\alpha \in A[/math] eine Teilmenge von [math]\beta[/math]. Die Vereinigung aller [math]\alpha \in A[/math] ist dann auch ein Schnitt, die kleinste obere Schranke von [math]A[/math].

Addition

Man definiert [math]\alpha + \beta := \{r+s \mid r\in \alpha, s\in \beta\}[/math].

Man kann zeigen, dass dies tatsächlich eine Addition, also eine kommutative, assoziative Verknüpfung, definiert und dass es zu jedem Schnitt [math]\alpha[/math] ein additiv inverses Element [math]-\alpha[/math] gibt. Des Weiteren fällt die Definition dieser Addition mit der bereits bekannten Addition auf [math]\mathbb Q[/math] zusammen.

Multiplikation

Für [math]\alpha \gt 0^*[/math] und [math]\beta \gt 0^*[/math] definiert man die Multiplikation wie folgt:

[math]\alpha \cdot \beta := \{ p \in \mathbb Q \mid \exists \, r \in \alpha, s \in \beta, r, s \gt 0 \colon p \leq r \cdot s \}[/math]

Diese Multiplikation kann man auf ganz [math]\mathbb R[/math] ausdehnen, indem man

[math]\alpha \cdot 0^* := 0^* \cdot \alpha := 0^*[/math]

und

[math]\alpha\cdot \beta := \begin{cases} (-\alpha)\cdot (-\beta) & \alpha, \beta \lt 0^* \\ -((-\alpha)\cdot (\beta)) & \alpha \lt 0^*, \beta \gt 0^* \\ -((\alpha)\cdot (-\beta)) & \alpha \gt 0^*, \beta \lt 0^* \end{cases} [/math]

definiert. Auch diese Multiplikation ist assoziativ, kommutativ und es gibt zu jedem [math]a \neq 0[/math] ein Inverses [math]a^{-1}[/math]. Zudem fällt diese Multiplikation auch mit der auf [math]\mathbb Q [/math] zusammen, falls die Faktoren rational sind.

Verallgemeinerungen

  • Wendet man die Konstruktion Dedekindscher Schnitte erneut auf die geordnete Menge [math](\R,\lt)[/math] an, so entstehen keine neuen Elemente, jeder Schnitt entsteht durch eine zugehörige Schnittzahl. Diese Eigenschaft wird auch als Schnittaxiom bezeichnet und ist fast wörtlich äquivalent zum Supremumsaxiom.
  • Jede (in sich) dichte strenge Totalordnung (M,<) lässt sich mit Hilfe von Dedekindschen Schnitten (auf M statt [math]\mathbb{Q}[/math]) in eine ordnungsvollständige Ordnung N einbetten. Im Sinne der Ordnungstheorie ist eine total geordnete Menge in sich dicht geordnet, wenn zwischen zwei verschiedenen Elementen stets ein drittes liegt. Ob und wie sich andere auf M vorhandene Strukturen (wie hier die Verknüpfungen Addition und Multiplikation) „sinnvoll“ auf N fortsetzen lassen, hängt vom speziellen Anwendungsfall ab (vergleiche hierzu Ordnungstopologie).
  • Eine zu den Dedekindschen Schnitten sehr ähnliche Methode wird zur Konstruktion der surrealen Zahlen benutzt.

Siehe auch

Literatur

  • Richard Dedekind: Stetigkeit und irrationale Zahlen. Friedrich Vieweg und Sohn, Braunschweig 1872. (online ).
  • Oliver Deiser: Grundbegriffe der wissenschaftlichen Mathematik. Springer 2010, ISBN 978-3-642-11488-5, S. 118-120 (Auszug (Google) ).
  • K. Mainzer Reelle Zahlen. Kapitel 2 (Paragraph 2 zu Dedekindschen Schnitten) in: Heinz-Dieter Ebbinghaus u. a.: Zahlen., Springer Verlag 1983, S. 30 f.
  • Harro Heuser: Lehrbuch der Analysis. Teil 1. Vieweg + Teubner, Wiesbaden 1980, 6. aktualisierte Auflage. ebenda 1988, ISBN 3-519-42221-2, S. 29-32, 36-38

Weblinks

Einzelnachweise

  1. Fritz Reinhardt, Heinrich Soeder: dv-Atlas zur Mathematik. Deutscher Taschenbuchverlag, München 1974, Seite 59.
  2. Edmund Landau: Grundlagen der Analysis. Akademische Verlagsgesellschaft M. B. H., Leipzig 1930, Kapitel 3, §1, Definition 28.
  3. Walter Rudin: Analysis. Oldenbourg Verlag, München 2005, ISBN 978-3-486-57852-2, Seite 19.

Kategorien: Zahl | Ordnungstheorie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Dedekindscher Schnitt (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.