CHAID - LinkFang.de





CHAID


CHAID (Chi-square Automatic Interaction Detectors) ist ein Algorithmus, der zur Entscheidungsfindung dient. Er wird bei der Konstruktion von Entscheidungsbäumen eingesetzt.

Der CHAID-Algorithmus wurde 1964 erstmals von J.A. Sonquist und J.N. Morgan publiziert und ist somit der Älteste der gängigen Entscheidungsbaum-Algorithmen. Anderberg 1973 beschreibt ihn. J.A. Hartigan 1975 gibt eine Implementierung an.

Der Hauptunterschied von CHAID zu CART und C4.5 besteht darin, dass der CHAID-Algorithmus das Wachsen des Baumes stoppt, bevor der Baum zu groß geworden ist. Der Baum wird also nicht beliebig wachsen gelassen, um ihn hinterher mit einer Pruning-Methode wieder zu stutzen. Ein weiterer Unterschied besteht darin, dass CHAID mit kategorial skalierten Variablen wie Farbe (rot, gelb, grün) oder Bewertung (gut, mittel, schlecht) arbeitet anstatt mit metrisch skalierten Variablen wie zum Beispiel Körpergröße in cm.

Für die Wahl der Attribute wird hier der Chi-Quadrat-Unabhängigkeitstest verwendet. CHAIDs kommen zur Anwendung, wenn eine Aussage über die Abhängigkeit zweier Variablen gemacht werden muss. Dazu wird eine Kennzahl, der Chi-Quadrat-Abstand berechnet. Dabei gilt: Je größer die Kennzahl, desto größer die Abhängigkeit der betrachteten Variablen. Die Variable mit dem größten Chi-Quadrat-Abstand zur Zielgröße wird als Attributauswahl berücksichtigt. Um die Trennqualität zu erhöhen, können hier - wie auch beim C4.5-Algorithmus - mehr als zwei Verzweigungen pro Knoten vorgenommen werden. Dies hat zur Folge, dass die generierten Bäume kompakter sind als die CARTs. Dieselbe Methode wird zur Ermittlung der besten Unterteilungen verwendet. Da bei diesen Entscheidungsbäumen alle möglichen Kombinationen von Ausprägungen ausgewertet werden müssen, kann es bei großen Datenmengen zu Laufzeitproblemen führen. Deshalb ist es von Vorteil, wenn die numerischen Variablen in Variablen mit kategoriellen Ausprägungen umgewandelt werden, obwohl dies einen zusätzlichen Aufwand bedeutet. Dafür sollte das Ergebnis qualitativ besser sein.

Siehe auch

Literatur

  • Sonquist, J.A. and Morgan, J.N. (1964): The Detection of Interaction Effects. Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor.
  • Anderberg, M.R. (1973): Cluster Analysis for Applications. New York - Academic Press.
  • Hartigan, J.A. (1975): Clustering Algorithms. New York - Wiley.

Kategorien: Klassifikationsverfahren

Quelle: Wikipedia - http://de.wikipedia.org/wiki/CHAID (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.