Berechenbarkeit - LinkFang.de





Berechenbarkeit


Dieser Artikel oder Abschnitt ist nicht ausreichend belegt.

Eine mathematische Funktion ist berechenbar (auch effektiv berechenbar oder rekursiv), wenn für sie eine Berechnungsanweisung (Algorithmus) formuliert werden kann (Berechenbarkeitstheorie). Die Funktion, die ein Algorithmus berechnet, ist gegeben durch die Ausgabe, mit der der Algorithmus auf eine Eingabe reagiert. Der Definitionsbereich der Funktion ist die Menge der Eingaben, für die der Algorithmus eine Ausgabe produziert. Wenn der Algorithmus nicht terminiert, dann ist die Eingabe kein Element der Definitionsmenge.

Dem Algorithmusbegriff liegt ein Berechnungsmodell zugrunde. Verschiedene Berechnungsmodelle sind entwickelt worden, es hat sich aber herausgestellt, dass die stärksten davon zum Modell der Turingmaschine gleich stark (Turing-mächtig) sind. Die Church-Turing-These behauptet daher, dass die Turingmaschinen den intuitiven Begriff der Berechenbarkeit wiedergeben. In der Berechenbarkeitstheorie heißen genau die Funktionen berechenbar, die Turing-berechenbar sind.

Zu den Turing-mächtigen Berechnungsmodellen gehören neben der Turingmaschine beispielsweise die WHILE-Programme, μ-rekursiven Funktionen, Registermaschinen und der Lambdakalkül.

Zu den Berechnungsmodellen, die schwächer sind als Turingmaschinen, gehören zum Beispiel die LOOP-Programme. Diese können zum Beispiel die Turing-berechenbare Ackermann-Funktion nicht berechnen.

Ein dem Begriff der Berechenbarkeit eng verwandter Begriff ist der der Entscheidbarkeit. Eine Teilmenge einer Menge (zum Beispiel eine Formale Sprache) heißt entscheidbar, wenn ihre charakteristische Funktion (im Wesentlichen das zugehörige Prädikat) berechenbar ist.

Formale Definition

Angenommen wird: der Algorithmus [math]P[/math] berechnet die Funktion [math]f \colon T\rightarrow \mathbb{N}[/math] mit [math]T\subseteq\mathbb{N}^k[/math], wenn [math]P[/math] bei Eingabe von [math]\left( n_1, \ldots, n_k \right) \in T[/math] nach einer endlichen Zahl von Schritten den Wert [math]f \left( n_1, \ldots, n_k \right)[/math] ausgibt und bei Eingabe von [math]\left( n_1, \ldots, n_k \right) \in \mathbb{N}^k \setminus T[/math] nicht terminiert.

Eine Funktion heißt berechenbar, wenn es einen Algorithmus gibt, der sie berechnet.

Den Berechenbarkeitsbegriff kann man gleichwertig auf partielle Funktionen übertragen. Eine partielle Funktion [math]f\colon\mathbb{N}^k \rightsquigarrow \mathbb{N}[/math] heißt berechenbar, wenn sie eingeschränkt auf ihren Definitionsbereich [math]f\colon\operatorname{Def}(f) \to \mathbb{N}[/math] eine berechenbare Funktion ist.

Zahlenfunktionen

In der Berechenbarkeitstheorie werden meist nur Funktionen natürlicher Zahlen betrachtet.

Definition berechenbarer Funktionen mit Registermaschinen

Eine Funktion [math]f \colon \mathbb{N}^k \rightarrow \mathbb{N}[/math] ist berechenbar genau dann, wenn es eine [math]k[/math]-stellige Registermaschine [math]M[/math] gibt, deren Maschinenfunktion mit [math]f[/math] übereinstimmt, also [math]f = f_M[/math] gilt.

Z. B. ist die Funktion

[math]f(x) = \mbox{div}[/math]

(die für kein Argument terminiert) berechenbar, da es eine entsprechende Registermaschine gibt.

Definition mit WHILE-Programmen

Eine Funktion [math]f[/math] (wie oben) ist berechenbar genau dann, wenn es ein WHILE-Programm [math]P[/math] gibt mit

[math] f = AC \circ \tau(P) \circ EC[/math].

Dabei ist [math]EC[/math] die Eingabecodierung, [math]AC[/math] die Ausgabecodierung und [math]\tau(P)[/math] die von [math]P[/math] über die Semantik realisierte Maschinenfunktion.

Definition durch Rekursion

Seien [math]\mu[/math], Sub und Prk die Operationen der µ-Rekursion, der Substitution und primitiven Rekursion. Funktionen, die sich aus der Menge der primitiv-rekursiven Grundfunktionen durch wiederholtes Anwenden dieser Operatoren erzeugen lassen, heißen µ-rekursiv. Die Menge der [math]\mu[/math]-rekursiven Funktionen ist genau die Menge der berechenbaren Funktionen.

Übergang von einstelligen zu mehrstelligen Funktionen

Über die cantorsche Paarungsfunktion wird der Begriff der Berechenbarkeit einer k-stelligen Funktion auf den der Berechenbarkeit von einstelligen Funktionen zurückgeführt. Insbesondere wird damit in natürlicher Weise definiert ob Funktionen von rationalen Zahlen berechenbar sind.

Wortfunktionen

Die Berechenbarkeit von Wortfunktionen lässt sich etwa mit Hilfe von Turingmaschinen zeigen. Alternativ führt man eine Standardnummerierung über die Wörter über [math]\Sigma^*[/math] ein und zeigt, dass die so erzeugten Zahlenfunktionen berechenbar sind.

Uniforme Berechenbarkeit

Eine zweistellige Funktion f(x,y) mit der Eigenschaft, dass für jeden festen Wert a die durch fa(y) = f(a,y) definierte einstellige Funktion fa berechenbar ist, muss selbst nicht unbedingt berechenbar sein; für jeden Wert a gibt es zwar einen Algorithmus (also etwa ein Programm für eine Turingmaschine) Ta, der fa berechnet, aber die Abbildung aTa ist im Allgemeinen nicht berechenbar.

Eine Familie (fa: a=0, 1, 2, …) von berechenbaren Funktionen heißt uniform berechenbar, wenn es einen Algorithmus gibt, der zu jedem a einen Algorithmus Ta liefert, welcher fa berechnet. Man kann leicht zeigen, dass so eine Familie genau dann uniform berechenbar ist, wenn die zweistellige Funktion (x, y) → fx(y) berechenbar ist.

Eigenschaften

Literatur

  • S. B. Cooper: Computability Theory. Chapman & Hall/CRC, 2004, ISBN 1-58488-237-9.
  • Nigel Cutland: Computability, An introduction to recursive function theory. Cambridge University Press, 1980, ISBN 0-521-29465-7.
  • Hans Hermes: Aufzählbarkeit - Entscheidbarkeit - Berechenbarkeit. Einführung in die Theorie der rekursiven Funktionen. Berlin - Göttingen - Heidelberg 1961, 2. Auflage. 1971 (als Heidelberger Taschenbuch).
  • Stephen Kleene: Introduction to Metamathematics. North-Holland, 1952, ISBN 0-7204-2103-9.
  • Piergiorgio Odifreddi: Classical Recursion Theory. North-Holland, 1989, ISBN 0-444-87295-7.
  • Hartley Rogers, Jr.: Theory of recursive functions and effective computability. McGraw-Hill, 1967, ISBN 978-0-262-68052-3.
  • Dieter Rödding: Registermaschinen. In: Der Mathematikunterricht. Heft 18, 1972, ISSN 0025-5807 , S. 32–41.
  • J.C. Shepherdson, H.E. Sturgis: Computability of Recursive Functions. Journal of the ACM, Band 10, Heft 2, April 1963, ISSN 0004-5411 , S. 217–255.

Weblinks

Siehe auch


Kategorien: Berechenbarkeitstheorie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Berechenbarkeit (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.