Algebraische Zahlentheorie - LinkFang.de





Algebraische Zahlentheorie


Die algebraische Zahlentheorie ist ein Teilgebiet der Zahlentheorie, die wiederum ein Teilgebiet der Mathematik ist.

Die algebraische Zahlentheorie geht über die ganzen bzw. rationalen Zahlen hinaus und betrachtet algebraische Zahlkörper, das sind endliche Erweiterungen der rationalen Zahlen. Elemente von Zahlkörpern sind Nullstellen von Polynomen mit rationalen Koeffizienten. Diese Zahlkörper enthalten den ganzen Zahlen analoge Teilmengen, die Ganzheitsringe. Ganzheitsringe sind Dedekindringe und verhalten sich in vieler Hinsicht wie der Ring der ganzen Zahlen, aber manche Eigenschaften nehmen eine etwas andere Form an. Beispielsweise gibt es im Allgemeinen keine eindeutige Zerlegung in Primzahlen mehr, sondern nur noch in Primideale.

Die algebraische Zahlentheorie beschäftigt sich weiterhin mit dem Studium algebraischer Funktionenkörper über endlichen Körpern, deren Theorie weitgehend analog zur Theorie der Zahlkörper verläuft. Algebraische Zahl- und Funktionenkörper werden unter dem Namen „globale Körper“ zusammengefasst.

Oftmals stellt es sich als fruchtbar heraus, Fragen „lokal“, also für jede Primstelle einzeln zu betrachten (Lokal-global-Prinzip). Dieser Vorgang führt im Fall der ganzen Zahlen zu den p-adischen Zahlen, allgemeiner zu lokalen Körpern.

Weiterführende Begriffe

Literatur

Weblinks

Vorlesung algebraische Zahlentheorie (19 Sitzungen) von Yorck Sommerhäuser, WiSe 2003/2004 an der LMU München im Quicktime-Format mit Simultananzeige der Präsentation


Kategorien: Teilgebiet der Mathematik | Algebraische Zahlentheorie

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Algebraische Zahlentheorie (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.