Abstrakte Algebra - LinkFang.de





Abstrakte Algebra


Die Abstrakte Algebra ist das Teilgebiet der Mathematik, das sich mit einzelnen algebraischen Strukturen wie Gruppen, Ringen, Körpern, Moduln und nicht zuletzt den Algebren beschäftigt und deren Eigenschaften untersucht. Die Bezeichnung „abstrakte“ Algebra dient der Abgrenzung zu anderen Teilgebieten der Mathematik, die, historisch bedingt, ebenfalls als Algebra bezeichnet werden, wie etwa die elementare Algebra der Schulmathematik.

In der Geschichte der Mathematik tauchten algebraische Strukturen zuerst in anderen Teilgebieten der Mathematik auf, wurden dann axiomatisch spezifiziert und schließlich als eigenständige Gebilde in der abstrakten Algebra untersucht. Deshalb hat die abstrakte Algebra viele Verbindungen zu allen Zweigen der Mathematik. Durch den abstrakten Zugang lassen sich beispielsweise übergeordnete Symmetrien entdecken, die dann in mehreren, eigentlich ganz verschiedenen Objekten existieren. Ein moderner Ansatz ist die Kategorientheorie. Anwendungen findet die abstrakte Algebra beispielsweise in der Darstellungstheorie oder bei Schemata.

Literatur

  • dtv-Atlas zur Mathematik, Bd. 1, 2. Auflage 1976, S. 70 ff.
  • Robin Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics. Springer-Verlag, New York 1977, ISBN 0-387-90244-9.

Weblinks

 Wikibooks: Mathematik: Algebra – Lern- und Lehrmaterialien

Kategorien: Teilgebiet der Mathematik | Algebra

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Abstrakte Algebra (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.