Abbildungsmaßstab - LinkFang.de





Abbildungsmaßstab


Der Abbildungsmaßstab (Formelzeichen [math]\beta[/math][1]) ist definiert als das Verhältnis zwischen der Bildgröße der optischen Abbildung (y', Bild) eines Gegenstandes und dessen realer Objektgröße (y, Gegenstand). Alternativ kann der Abbildungsmaßstab auch über das Verhältnis von Bildweite a' zur Objektweite a bestimmt werden:

[math]\beta = \frac {y'} {y} = \frac {a'} {a}[/math][1][2]

Für y=1 oder für y'=1 ist es oft üblich, den Betrag des Abbildungsmaßstabs als das Verhältnis 1:y beziehungsweise y':1 anzugeben.

  • Ein Abbildungsmaßstab mit dem Betrag 1 sagt aus, dass der Gegenstand und seine Abbildung gleich groß sind.
  • Ein Abbildungsmaßstab mit dem Betrag 0,5 sagt aus, dass der Gegenstand doppelt so groß ist wie seine Abbildung.
  • Ein Abbildungsmaßstab mit dem Betrag 2 sagt aus, dass die Abbildung doppelt so groß ist wie der Gegenstand.

Fotografie

In der Fotografie bezeichnet man als Abbildungsmaßstab den Betrag des Verhältnisses der Abbildungsgröße eines Objektes auf der Bildebene zur Größe des Originalobjektes selbst. Der Abbildungsmaßstab nimmt mit kleiner werdendem Abstand zum Objekt und mit Verlängerung der Objektivbrennweite zu.

Aufgrund der einem jeden Objektiv eigenen Naheinstellgrenze (der Mindestabstand zum Objekt), unterhalb derer es nicht mehr möglich ist, auf das Objekt zu fokussieren, kann der Objektabstand allerdings nicht beliebig verringert werden.

Spezielle Objektive für die Makrofotografie, die sogenannten Makro-Objektive, können mit einem besonders geringen Objektabstand eingesetzt werden und ermöglichen dadurch einen besonders großen Abbildungsmaßstab, wie beispielsweise 0,5 (die Abbildung ist halb so groß wie das Objekt) oder 1 (Objekt wird in Originalgröße in der Bildebene abgebildet). Bei einem Abbildungsmaßstab von mindestens 0,25 wird ein Objektiv als makrofähig bezeichnet. Normale Objektive erzielen maximale Abbildungsmaßstäbe im Bereich von 1:7 bis 1:9.

Ein Anfang der 1990er Jahre vorgestelltes Spezialobjektiv von Minolta, das Minolta AF Macro Zoom 3x–1x (1:1,7–1:2,8), ermöglicht sogar einen Abbildungsmaßstab von 3; es kann also ein Objekt dreifach vergrößert in die Bildebene abbilden. Um derartige Abbildungsmaßstäbe ohne Spezialobjektive zu erzielen, müssen normalerweise ein Balgengerät, Zwischenringe und zusätzlich ein Objektiv in Retrostellung zur Vermeidung von Farbfehlern eingesetzt werden.

Beispiele zur Berechnung des Abbildungsmaßstabes:

  • Bildet die Kamera einen 20 cm hohen Kopf in der Bildebene mit einer Höhe von 0,5 Zentimetern ab, so ist der Betrag des Abbildungsmaßstabs 0,5:20 = 1:40 = 0,025
  • Wird eine 36 Millimeter langes Insekt in der Bildbreite von 36 Millimetern formatfüllend auf Kleinbildfilm abgebildet, bedeutet dies, dass der Abbildungsmaßstab 1 beträgt

Häufig unterlassen es die Hersteller von Wechselobjektiven, den mit einem bestimmten Objektiv erzielbaren Abbildungsmaßstab anzugeben; stattdessen wird häufig nur der kürzestmögliche Objektabstand angegeben. Diese Angabe lässt jedoch nur einen indirekten Rückschluss über den effektiv erzielbaren Abbildungsmaßstab zu, zumal viele Objektive mit Kameragehäusen verschiedener Bildsensorgrößen verwendet werden können. Mit Testaufnahmen lässt sich der Abbildungsmaßstab jedoch ermitteln.

Relativer Abbildungsmaßstab

Der relative Abbildungsmaßstab [math]m_{\text{rel}}[/math] ist definiert als das Verhältnis des Maßstabs [math]m[/math] einer optischen Abbildung mit der Brennweite [math]f[/math] zum Maßstab [math]m_{\mathrm{N}}[/math] bei einer optischen Abbildung mit der Normalbrennweite [math]f_{\mathrm{N}}[/math]:

[math]m_{\text{rel}} = \frac{m}{m_{\mathrm{N}}}[/math]

Gleichzeitig ist für große Entfernungen der abgebildeten Gegenstände (die Gegenstandsweite ist deutlich größer als die Brennweite [math]f[/math]) der relative Abbildungsmaßstab näherungsweise auch durch folgenden Ausdruck gegeben:

[math]m_{\text{rel}} = \frac{f}{f_{\mathrm{N}}}[/math]

Siehe auch

Literatur

  • Gottfried Schröder: Technische Fotografie: Grundlagen und Anwendungen in Technik und Wissenschaft, Vogel-Druck, Würzburg, 1. Auflage, 1981

Weblinks

 Wiktionary: Abbildungsmaßstab – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. 1,0 1,1 Siehe DIN 4522-7:1991-04 und DIN 1335:2003-12
  2. Helmut Naumann, Gottfried Schröder, Martin Löffler-Mang: Handbuch Bauelemente der Optik: Grundlagen, Werkstoffe, Geräte, Messtechnik, Carl Hanser Verlag, 2014, ISBN 9783446441156

Kategorien: Keine Kategorien vorhanden!

Quelle: Wikipedia - http://de.wikipedia.org/wiki/Abbildungsmaßstab (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.