ARCH-Modell - LinkFang.de





ARCH-Modell


Ein ARCH-Modell (autoregressive conditional heteroscedasticity) ist ein stochastisches Modell zur Zeitreihenanalyse, mit dessen Hilfe insbesondere finanzmathematische Zeitreihen mit nicht konstanter Volatilität beschrieben werden können. Es geht von der Annahme aus, dass die bedingte Varianz der zufälligen Modellfehler abhängig ist vom realisierten Zufallsfehler der Vorperiode, so dass große und kleine Fehler dazu tendieren, in Gruppen aufzutreten. ARCH-Modelle wurden von Robert F. Engle in den 1980er Jahren entwickelt. Im Jahr 2003 wurde ihm dafür der Nobelpreis für Wirtschaftswissenschaften verliehen.

Definition

Eine Zeitreihe [math](x_t)_{t \in \Z}[/math] heißt ARCH(p)-Zeitreihe, wenn sie rekursiv definiert ist durch[1]

[math] \begin{align} x_t &= \sigma_t \epsilon_t \\ \sigma_t^2 &= a_0 + a_1 x_{t-1}^2 + \dotsb + a_p x_{t-p}^2, \end{align} [/math]

wobei [math]a_0, \dotsc, a_p[/math] mit [math]a_p \neq 0[/math] reelle, nichtnegative Parameter sind, und der Prozess [math](\epsilon_t)_{t\in \Z}[/math] aus unabhängigen identisch verteilten Zufallsvariablen mit [math]\operatorname{E}(\epsilon_t) = 0[/math] und [math]\operatorname{Var}(\epsilon_t) = 1[/math] besteht.

Eigenschaften

Für ARCH-Modelle gelten unter der Zusatzbedingung, dass [math]\sigma_t[/math] für alle [math]t\in \Z[/math] bezüglich der durch [math](\epsilon_s)_{s \leq t-1}[/math] erzeugten σ-Algebra messbar ist, die folgenden Aussagen:[1][2]

[math]\operatorname{E}(x_t \mid x_{t-1}, x_{t-2}, \dotsc) = 0[/math]  und
[math]\operatorname{Var}(x_t \mid x_{t-1}, x_{t-2}, \dotsc) = \sigma_t^2[/math].
  • Eine ARCH(p)-Zeitreihe [math](x_t)[/math] ist genau dann (schwach) stationär, wenn alle Nullstellen des charakteristischen Polynoms
[math]P(z) = 1 - a_1 z - \dotsb - a_p z^p[/math]
außerhalb des komplexen Einheitskreises liegen.
  • Eine stationäre ARCH(p)-Zeitreihe hat den stationären Erwartungswert [math]\operatorname{E}(x_t) = 0[/math] und ihre Autokorrelation verschwindet: [math]\operatorname{Cov}(x_t, x_{t+h}) = 0[/math] für [math]h \gt 0[/math]. Für ihre stationäre Varianz gilt die Formel
[math]\operatorname{Var}(x_t) = \frac{a_0}{1- \sum_{k=1}^p a_k}[/math].
  • Ist [math](x_t)[/math] eine stationäre ARCH(p)-Zeitreihe, für die [math]\operatorname{E}(x_t^4) \lt \infty[/math] gilt, dann ist der quadrierte Prozess [math](x_t^2)[/math] eine AR-Zeitreihe.

Verallgemeinerungen

Die Idee des ARCH-Modells wurde in verschiedener Weise weiterentwickelt und gehört heute ganz selbstverständlich zu den fortgeschrittenen Methoden der Ökonometrie.

Eine Verallgemeinerung sind die GARCH-Modelle (generalized autoregressive conditional heteroscedasticity), die 1986 von Tim Bollerslev entwickelt wurden. Hierbei hängt die bedingte Varianz nicht nur von der Historie der Zeitreihe ab, sondern auch von ihrer eigenen Vergangenheit. Zeitstetige Analoga, sogenannte COGARCH-Modelle (continuous-time GARCH), wurden von Feike C. Drost und Bas J. C. Werker sowie Claudia Klüppelberg, Alexander Lindner und Ross Maller vorgestellt.

Literatur

  • Robert F. Engle: Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK. Inflation. In: Econometrica. Vol.: 50, pp. 987–1008, 1982.
  • Tim Bollerslev: Generalized Autoregressive Conditional Heteroskedasticity. In: Journal of Econometrics. Vol.: 31 No.: 3, pp. 307–327, 1986.
  • Jürgen Franke, Wolfgang Härdle, Christian Matthias Hafner: Statistics of Financial Markets: An Introduction. 3. Auflage Springer, Berlin/Heidelberg/New York 2011, ISBN 978-3-642-16520-7, Kapitel 13, S. 283–342.
  • Christian Gouriéroux: ARCH Models and Financial Applications. Springer, New York 1997, ISBN 0-387-94876-7.
  • Feike C. Drost, F.C., Bas J. C. Werker: Closing the GARCH gap: continuous GARCH modelling. In: Journal of Econometrics. Vol.: 74, No.: 1, pp. 31-57, 1996.
  • Claudia Klüppelberg, Alexander Lindner, Ross Maller: A continuous-time GARCH process driven by a Lévy process: Stationarity and second-order behaviour. In: Journal of Applied Probability. Vol.: 41 No.: 3, pp. 601–622, 2004.
  • Evdokia Xekalaki, Stavros Degiannakis: ARCH Models for Financial Applications. Wiley, New York 2010, ISBN 978-0-470-06630-0.

Einzelnachweise

  1. 1,0 1,1 Jens-Peter Kreiß, Georg Neuhaus: Einführung in die Zeitreihenanalyse. Springer-Verlag, Berlin / Heidelberg 2006, ISBN 3-540-25628-8, S. 298f.
  2. Rainer Schlittgen, Bernd H. J. Streitberg: Zeitreihenanalyse. 9. Auflage. Oldenbourg Verlag, München/Wien 2001, ISBN 3-486-25725-0, S. 450 f.

Kategorien: Ökonometrie | Zeitreihenanalyse

Quelle: Wikipedia - http://de.wikipedia.org/wiki/ARCH-Modell (Vollständige Liste der Autoren des Textes [Versionsgeschichte])    Lizenz: CC-by-sa-3.0

Änderungen: Alle Bilder mit den meisten Bildunterschriften wurden entfernt. Ebenso alle zu nicht-existierenden Artikeln/Kategorien gehenden internen Wikipedia-Links (Bsp. Portal-Links, Redlinks, Bearbeiten-Links). Entfernung von Navigationsframes, Geo & Normdaten, Mediadateien, gesprochene Versionen, z.T. ID&Class-Namen, Style von Div-Containern, Metadaten, Vorlagen, wie lesenwerte Artikel. Ansonsten sind keine Inhaltsänderungen vorgenommen worden. Weiterhin kann es durch die maschinelle Bearbeitung des Inhalts zu Fehlern gerade in der Darstellung kommen. Darum würden wir jeden Besucher unserer Seite darum bitten uns diese Fehler über den Support mittels einer Nachricht mit Link zu melden. Vielen Dank!

Stand der Informationen: August 201& - Wichtiger Hinweis: Da die Inhalte maschinell von Wikipedia übernommen wurden, ist eine manuelle Überprüfung nicht möglich. Somit garantiert LinkFang.de nicht die Richtigkeit und Aktualität der übernommenen Inhalte. Sollten die Informationen mittlerweile fehlerhaft sein, bitten wir Sie darum uns per Support oder E-Mail zu kontaktieren. Wir werden uns dann innerhalb von spätestens 10 Tagen um Ihr Anliegen kümmern. Auch ohne Anliegen erfolgt mindestens alle drei Monate ein Update der gesamten Inhalte.